Loading…
A modified Rician LMMSE estimator for the restoration of magnitude MR images
In this article two modified versions of a simple and recently proposed method which is known as linear minimum mean square error (LMMSE) estimator for denoising of magnetic resonance (MR) images are presented. In the introduced approaches the self-similarity and natural redundancy of the acquired M...
Saved in:
Published in: | Optik (Stuttgart) 2013-08, Vol.124 (16), p.2387-2392 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c369t-488a4291586b0e2e2683707dda6b82f53932e78270d16fd8756273102f3aaaa83 |
---|---|
cites | cdi_FETCH-LOGICAL-c369t-488a4291586b0e2e2683707dda6b82f53932e78270d16fd8756273102f3aaaa83 |
container_end_page | 2392 |
container_issue | 16 |
container_start_page | 2387 |
container_title | Optik (Stuttgart) |
container_volume | 124 |
creator | Golshan, Hosein M. Hasanzadeh, Reza P.R. |
description | In this article two modified versions of a simple and recently proposed method which is known as linear minimum mean square error (LMMSE) estimator for denoising of magnetic resonance (MR) images are presented. In the introduced approaches the self-similarity and natural redundancy of the acquired MR image are considered to achieve the higher performance of unknown signal estimation. Since, the MR data are in a large majority 3D, the proposed methods are developed to deal with 3D volumes. The introduced methods are compared with related state-of-the-art schemes over both clinical and simulated MR data. The quantitative and qualitative results show their superior denoising ability. |
doi_str_mv | 10.1016/j.ijleo.2012.07.001 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671542029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0030402612004780</els_id><sourcerecordid>1429874720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-488a4291586b0e2e2683707dda6b82f53932e78270d16fd8756273102f3aaaa83</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWKufwEuOXnadJNskPXgopf6BFqHqOaSb2Zql3dRkK_jtTa1nHRgGhveGNz9CrhmUDJi8bUvfbjCUHBgvQZUA7IQMmGS6YELIUzIAEFBUwOU5uUipBQClQA3IfEK3wfnGo6NLX3vb0fli8TKjmHq_tX2ItMndvyONeRWi7X3oaGjo1q473-8d0sWSZuka0yU5a-wm4dXvHJK3-9nr9LGYPz88TSfzohZy3BeV1rbiYzbScgXIkUstchjnrFxp3ozEWHBUmitwTDZOq5HkSjDgjbC5tBiSm-PdXQwf-xzLbH2qcbOxHYZ9MkwqNqo48PH_0hxEq0pxyFJxlNYxpBSxMbuY_4pfhoE5YDat-cFsDpgNKJMxZ9fd0YX54U-P0aTaY1ej8xHr3rjg__R_A7HahGQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1429874720</pqid></control><display><type>article</type><title>A modified Rician LMMSE estimator for the restoration of magnitude MR images</title><source>ScienceDirect Journals</source><creator>Golshan, Hosein M. ; Hasanzadeh, Reza P.R.</creator><creatorcontrib>Golshan, Hosein M. ; Hasanzadeh, Reza P.R.</creatorcontrib><description>In this article two modified versions of a simple and recently proposed method which is known as linear minimum mean square error (LMMSE) estimator for denoising of magnetic resonance (MR) images are presented. In the introduced approaches the self-similarity and natural redundancy of the acquired MR image are considered to achieve the higher performance of unknown signal estimation. Since, the MR data are in a large majority 3D, the proposed methods are developed to deal with 3D volumes. The introduced methods are compared with related state-of-the-art schemes over both clinical and simulated MR data. The quantitative and qualitative results show their superior denoising ability.</description><identifier>ISSN: 0030-4026</identifier><identifier>EISSN: 1618-1336</identifier><identifier>DOI: 10.1016/j.ijleo.2012.07.001</identifier><language>eng</language><publisher>Elsevier GmbH</publisher><subject>Denoising ; Estimators ; Image acquisition ; Image restoration ; Linear minimum mean square error ; Magnetic resonance imaging ; Noise reduction ; Restoration ; Rician distribution ; Simulation ; State of the art ; Three dimensional</subject><ispartof>Optik (Stuttgart), 2013-08, Vol.124 (16), p.2387-2392</ispartof><rights>2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-488a4291586b0e2e2683707dda6b82f53932e78270d16fd8756273102f3aaaa83</citedby><cites>FETCH-LOGICAL-c369t-488a4291586b0e2e2683707dda6b82f53932e78270d16fd8756273102f3aaaa83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Golshan, Hosein M.</creatorcontrib><creatorcontrib>Hasanzadeh, Reza P.R.</creatorcontrib><title>A modified Rician LMMSE estimator for the restoration of magnitude MR images</title><title>Optik (Stuttgart)</title><description>In this article two modified versions of a simple and recently proposed method which is known as linear minimum mean square error (LMMSE) estimator for denoising of magnetic resonance (MR) images are presented. In the introduced approaches the self-similarity and natural redundancy of the acquired MR image are considered to achieve the higher performance of unknown signal estimation. Since, the MR data are in a large majority 3D, the proposed methods are developed to deal with 3D volumes. The introduced methods are compared with related state-of-the-art schemes over both clinical and simulated MR data. The quantitative and qualitative results show their superior denoising ability.</description><subject>Denoising</subject><subject>Estimators</subject><subject>Image acquisition</subject><subject>Image restoration</subject><subject>Linear minimum mean square error</subject><subject>Magnetic resonance imaging</subject><subject>Noise reduction</subject><subject>Restoration</subject><subject>Rician distribution</subject><subject>Simulation</subject><subject>State of the art</subject><subject>Three dimensional</subject><issn>0030-4026</issn><issn>1618-1336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEQxYMoWKufwEuOXnadJNskPXgopf6BFqHqOaSb2Zql3dRkK_jtTa1nHRgGhveGNz9CrhmUDJi8bUvfbjCUHBgvQZUA7IQMmGS6YELIUzIAEFBUwOU5uUipBQClQA3IfEK3wfnGo6NLX3vb0fli8TKjmHq_tX2ItMndvyONeRWi7X3oaGjo1q473-8d0sWSZuka0yU5a-wm4dXvHJK3-9nr9LGYPz88TSfzohZy3BeV1rbiYzbScgXIkUstchjnrFxp3ozEWHBUmitwTDZOq5HkSjDgjbC5tBiSm-PdXQwf-xzLbH2qcbOxHYZ9MkwqNqo48PH_0hxEq0pxyFJxlNYxpBSxMbuY_4pfhoE5YDat-cFsDpgNKJMxZ9fd0YX54U-P0aTaY1ej8xHr3rjg__R_A7HahGQ</recordid><startdate>201308</startdate><enddate>201308</enddate><creator>Golshan, Hosein M.</creator><creator>Hasanzadeh, Reza P.R.</creator><general>Elsevier GmbH</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201308</creationdate><title>A modified Rician LMMSE estimator for the restoration of magnitude MR images</title><author>Golshan, Hosein M. ; Hasanzadeh, Reza P.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-488a4291586b0e2e2683707dda6b82f53932e78270d16fd8756273102f3aaaa83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Denoising</topic><topic>Estimators</topic><topic>Image acquisition</topic><topic>Image restoration</topic><topic>Linear minimum mean square error</topic><topic>Magnetic resonance imaging</topic><topic>Noise reduction</topic><topic>Restoration</topic><topic>Rician distribution</topic><topic>Simulation</topic><topic>State of the art</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Golshan, Hosein M.</creatorcontrib><creatorcontrib>Hasanzadeh, Reza P.R.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optik (Stuttgart)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Golshan, Hosein M.</au><au>Hasanzadeh, Reza P.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A modified Rician LMMSE estimator for the restoration of magnitude MR images</atitle><jtitle>Optik (Stuttgart)</jtitle><date>2013-08</date><risdate>2013</risdate><volume>124</volume><issue>16</issue><spage>2387</spage><epage>2392</epage><pages>2387-2392</pages><issn>0030-4026</issn><eissn>1618-1336</eissn><abstract>In this article two modified versions of a simple and recently proposed method which is known as linear minimum mean square error (LMMSE) estimator for denoising of magnetic resonance (MR) images are presented. In the introduced approaches the self-similarity and natural redundancy of the acquired MR image are considered to achieve the higher performance of unknown signal estimation. Since, the MR data are in a large majority 3D, the proposed methods are developed to deal with 3D volumes. The introduced methods are compared with related state-of-the-art schemes over both clinical and simulated MR data. The quantitative and qualitative results show their superior denoising ability.</abstract><pub>Elsevier GmbH</pub><doi>10.1016/j.ijleo.2012.07.001</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0030-4026 |
ispartof | Optik (Stuttgart), 2013-08, Vol.124 (16), p.2387-2392 |
issn | 0030-4026 1618-1336 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671542029 |
source | ScienceDirect Journals |
subjects | Denoising Estimators Image acquisition Image restoration Linear minimum mean square error Magnetic resonance imaging Noise reduction Restoration Rician distribution Simulation State of the art Three dimensional |
title | A modified Rician LMMSE estimator for the restoration of magnitude MR images |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A26%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20modified%20Rician%20LMMSE%20estimator%20for%20the%20restoration%20of%20magnitude%20MR%20images&rft.jtitle=Optik%20(Stuttgart)&rft.au=Golshan,%20Hosein%20M.&rft.date=2013-08&rft.volume=124&rft.issue=16&rft.spage=2387&rft.epage=2392&rft.pages=2387-2392&rft.issn=0030-4026&rft.eissn=1618-1336&rft_id=info:doi/10.1016/j.ijleo.2012.07.001&rft_dat=%3Cproquest_cross%3E1429874720%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c369t-488a4291586b0e2e2683707dda6b82f53932e78270d16fd8756273102f3aaaa83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1429874720&rft_id=info:pmid/&rfr_iscdi=true |