Loading…

A modified Rician LMMSE estimator for the restoration of magnitude MR images

In this article two modified versions of a simple and recently proposed method which is known as linear minimum mean square error (LMMSE) estimator for denoising of magnetic resonance (MR) images are presented. In the introduced approaches the self-similarity and natural redundancy of the acquired M...

Full description

Saved in:
Bibliographic Details
Published in:Optik (Stuttgart) 2013-08, Vol.124 (16), p.2387-2392
Main Authors: Golshan, Hosein M., Hasanzadeh, Reza P.R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c369t-488a4291586b0e2e2683707dda6b82f53932e78270d16fd8756273102f3aaaa83
cites cdi_FETCH-LOGICAL-c369t-488a4291586b0e2e2683707dda6b82f53932e78270d16fd8756273102f3aaaa83
container_end_page 2392
container_issue 16
container_start_page 2387
container_title Optik (Stuttgart)
container_volume 124
creator Golshan, Hosein M.
Hasanzadeh, Reza P.R.
description In this article two modified versions of a simple and recently proposed method which is known as linear minimum mean square error (LMMSE) estimator for denoising of magnetic resonance (MR) images are presented. In the introduced approaches the self-similarity and natural redundancy of the acquired MR image are considered to achieve the higher performance of unknown signal estimation. Since, the MR data are in a large majority 3D, the proposed methods are developed to deal with 3D volumes. The introduced methods are compared with related state-of-the-art schemes over both clinical and simulated MR data. The quantitative and qualitative results show their superior denoising ability.
doi_str_mv 10.1016/j.ijleo.2012.07.001
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671542029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0030402612004780</els_id><sourcerecordid>1429874720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-488a4291586b0e2e2683707dda6b82f53932e78270d16fd8756273102f3aaaa83</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWKufwEuOXnadJNskPXgopf6BFqHqOaSb2Zql3dRkK_jtTa1nHRgGhveGNz9CrhmUDJi8bUvfbjCUHBgvQZUA7IQMmGS6YELIUzIAEFBUwOU5uUipBQClQA3IfEK3wfnGo6NLX3vb0fli8TKjmHq_tX2ItMndvyONeRWi7X3oaGjo1q473-8d0sWSZuka0yU5a-wm4dXvHJK3-9nr9LGYPz88TSfzohZy3BeV1rbiYzbScgXIkUstchjnrFxp3ozEWHBUmitwTDZOq5HkSjDgjbC5tBiSm-PdXQwf-xzLbH2qcbOxHYZ9MkwqNqo48PH_0hxEq0pxyFJxlNYxpBSxMbuY_4pfhoE5YDat-cFsDpgNKJMxZ9fd0YX54U-P0aTaY1ej8xHr3rjg__R_A7HahGQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1429874720</pqid></control><display><type>article</type><title>A modified Rician LMMSE estimator for the restoration of magnitude MR images</title><source>ScienceDirect Journals</source><creator>Golshan, Hosein M. ; Hasanzadeh, Reza P.R.</creator><creatorcontrib>Golshan, Hosein M. ; Hasanzadeh, Reza P.R.</creatorcontrib><description>In this article two modified versions of a simple and recently proposed method which is known as linear minimum mean square error (LMMSE) estimator for denoising of magnetic resonance (MR) images are presented. In the introduced approaches the self-similarity and natural redundancy of the acquired MR image are considered to achieve the higher performance of unknown signal estimation. Since, the MR data are in a large majority 3D, the proposed methods are developed to deal with 3D volumes. The introduced methods are compared with related state-of-the-art schemes over both clinical and simulated MR data. The quantitative and qualitative results show their superior denoising ability.</description><identifier>ISSN: 0030-4026</identifier><identifier>EISSN: 1618-1336</identifier><identifier>DOI: 10.1016/j.ijleo.2012.07.001</identifier><language>eng</language><publisher>Elsevier GmbH</publisher><subject>Denoising ; Estimators ; Image acquisition ; Image restoration ; Linear minimum mean square error ; Magnetic resonance imaging ; Noise reduction ; Restoration ; Rician distribution ; Simulation ; State of the art ; Three dimensional</subject><ispartof>Optik (Stuttgart), 2013-08, Vol.124 (16), p.2387-2392</ispartof><rights>2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-488a4291586b0e2e2683707dda6b82f53932e78270d16fd8756273102f3aaaa83</citedby><cites>FETCH-LOGICAL-c369t-488a4291586b0e2e2683707dda6b82f53932e78270d16fd8756273102f3aaaa83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Golshan, Hosein M.</creatorcontrib><creatorcontrib>Hasanzadeh, Reza P.R.</creatorcontrib><title>A modified Rician LMMSE estimator for the restoration of magnitude MR images</title><title>Optik (Stuttgart)</title><description>In this article two modified versions of a simple and recently proposed method which is known as linear minimum mean square error (LMMSE) estimator for denoising of magnetic resonance (MR) images are presented. In the introduced approaches the self-similarity and natural redundancy of the acquired MR image are considered to achieve the higher performance of unknown signal estimation. Since, the MR data are in a large majority 3D, the proposed methods are developed to deal with 3D volumes. The introduced methods are compared with related state-of-the-art schemes over both clinical and simulated MR data. The quantitative and qualitative results show their superior denoising ability.</description><subject>Denoising</subject><subject>Estimators</subject><subject>Image acquisition</subject><subject>Image restoration</subject><subject>Linear minimum mean square error</subject><subject>Magnetic resonance imaging</subject><subject>Noise reduction</subject><subject>Restoration</subject><subject>Rician distribution</subject><subject>Simulation</subject><subject>State of the art</subject><subject>Three dimensional</subject><issn>0030-4026</issn><issn>1618-1336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEQxYMoWKufwEuOXnadJNskPXgopf6BFqHqOaSb2Zql3dRkK_jtTa1nHRgGhveGNz9CrhmUDJi8bUvfbjCUHBgvQZUA7IQMmGS6YELIUzIAEFBUwOU5uUipBQClQA3IfEK3wfnGo6NLX3vb0fli8TKjmHq_tX2ItMndvyONeRWi7X3oaGjo1q473-8d0sWSZuka0yU5a-wm4dXvHJK3-9nr9LGYPz88TSfzohZy3BeV1rbiYzbScgXIkUstchjnrFxp3ozEWHBUmitwTDZOq5HkSjDgjbC5tBiSm-PdXQwf-xzLbH2qcbOxHYZ9MkwqNqo48PH_0hxEq0pxyFJxlNYxpBSxMbuY_4pfhoE5YDat-cFsDpgNKJMxZ9fd0YX54U-P0aTaY1ej8xHr3rjg__R_A7HahGQ</recordid><startdate>201308</startdate><enddate>201308</enddate><creator>Golshan, Hosein M.</creator><creator>Hasanzadeh, Reza P.R.</creator><general>Elsevier GmbH</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201308</creationdate><title>A modified Rician LMMSE estimator for the restoration of magnitude MR images</title><author>Golshan, Hosein M. ; Hasanzadeh, Reza P.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-488a4291586b0e2e2683707dda6b82f53932e78270d16fd8756273102f3aaaa83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Denoising</topic><topic>Estimators</topic><topic>Image acquisition</topic><topic>Image restoration</topic><topic>Linear minimum mean square error</topic><topic>Magnetic resonance imaging</topic><topic>Noise reduction</topic><topic>Restoration</topic><topic>Rician distribution</topic><topic>Simulation</topic><topic>State of the art</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Golshan, Hosein M.</creatorcontrib><creatorcontrib>Hasanzadeh, Reza P.R.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optik (Stuttgart)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Golshan, Hosein M.</au><au>Hasanzadeh, Reza P.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A modified Rician LMMSE estimator for the restoration of magnitude MR images</atitle><jtitle>Optik (Stuttgart)</jtitle><date>2013-08</date><risdate>2013</risdate><volume>124</volume><issue>16</issue><spage>2387</spage><epage>2392</epage><pages>2387-2392</pages><issn>0030-4026</issn><eissn>1618-1336</eissn><abstract>In this article two modified versions of a simple and recently proposed method which is known as linear minimum mean square error (LMMSE) estimator for denoising of magnetic resonance (MR) images are presented. In the introduced approaches the self-similarity and natural redundancy of the acquired MR image are considered to achieve the higher performance of unknown signal estimation. Since, the MR data are in a large majority 3D, the proposed methods are developed to deal with 3D volumes. The introduced methods are compared with related state-of-the-art schemes over both clinical and simulated MR data. The quantitative and qualitative results show their superior denoising ability.</abstract><pub>Elsevier GmbH</pub><doi>10.1016/j.ijleo.2012.07.001</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0030-4026
ispartof Optik (Stuttgart), 2013-08, Vol.124 (16), p.2387-2392
issn 0030-4026
1618-1336
language eng
recordid cdi_proquest_miscellaneous_1671542029
source ScienceDirect Journals
subjects Denoising
Estimators
Image acquisition
Image restoration
Linear minimum mean square error
Magnetic resonance imaging
Noise reduction
Restoration
Rician distribution
Simulation
State of the art
Three dimensional
title A modified Rician LMMSE estimator for the restoration of magnitude MR images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A26%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20modified%20Rician%20LMMSE%20estimator%20for%20the%20restoration%20of%20magnitude%20MR%20images&rft.jtitle=Optik%20(Stuttgart)&rft.au=Golshan,%20Hosein%20M.&rft.date=2013-08&rft.volume=124&rft.issue=16&rft.spage=2387&rft.epage=2392&rft.pages=2387-2392&rft.issn=0030-4026&rft.eissn=1618-1336&rft_id=info:doi/10.1016/j.ijleo.2012.07.001&rft_dat=%3Cproquest_cross%3E1429874720%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c369t-488a4291586b0e2e2683707dda6b82f53932e78270d16fd8756273102f3aaaa83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1429874720&rft_id=info:pmid/&rfr_iscdi=true