Loading…

Self-assembly of regenerated silk fibroin from random coil nanostructures to antiparallel β-sheet nanostructures

ABSTRACT In this work, we studied the effects of incubation concentration and time on the self‐assembly behaviors of regenerated silk fibroin (RSF). Our results showed the assembly ways of RSF were concentration‐dependent and there were four self‐assembly ways of RSF: (i) At relatively low concentra...

Full description

Saved in:
Bibliographic Details
Published in:Biopolymers 2014-12, Vol.101 (12), p.1181-1192
Main Authors: Zhong, Jian, Ma, Mengjia, Li, Wenying, Zhou, Juan, Yan, Zhiqiang, He, Dannong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4642-49b539bcc55f70b47855d26d0303bda93189706af65848d077b053ce1dcbaee83
cites cdi_FETCH-LOGICAL-c4642-49b539bcc55f70b47855d26d0303bda93189706af65848d077b053ce1dcbaee83
container_end_page 1192
container_issue 12
container_start_page 1181
container_title Biopolymers
container_volume 101
creator Zhong, Jian
Ma, Mengjia
Li, Wenying
Zhou, Juan
Yan, Zhiqiang
He, Dannong
description ABSTRACT In this work, we studied the effects of incubation concentration and time on the self‐assembly behaviors of regenerated silk fibroin (RSF). Our results showed the assembly ways of RSF were concentration‐dependent and there were four self‐assembly ways of RSF: (i) At relatively low concentration (≤0.015%), RSF molecules assembled into protofilaments (random coil), and then the thickness decreased and the secondary conformation changed to antiparallel β‐sheet; (ii) at the concentration of 0.015%, RSF molecules assembled into protofilaments (random coil), and then assembled into protofibrils (antiparallel β‐sheet). The protofibrils experienced the appearance and disappearance of phase periodic intervals in turn; (iii) at the concentration of 0.03%, RSF molecules assembled into bead‐like oligomers (random coil), and then assembled into protofibrils (antiparallel β‐sheet), and finally the height and phase periodic intervals of RSF protofibrils disappeared in turn; and (iv) at the relatively high concentration (≥0.15%), RSF molecules assembled into protofilaments (random coil), then aggregated into blurry cuboid‐like micelles (random coil), and finally self‐arranged to form smooth and clear cuboid‐like micelles (antiparallel β‐sheet). These results provide useful insights into the process by which the RSF molecules self‐assemble into protofilaments, protofibrils and micelles. Furthermore, our work will be beneficial to basic understanding of the nanoscale structure formations in different silk‐based biomaterials. © 2014 Wiley Periodicals, Inc. Biopolymers 101: 1181–1192, 2014.
doi_str_mv 10.1002/bip.22532
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671547833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1566855992</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4642-49b539bcc55f70b47855d26d0303bda93189706af65848d077b053ce1dcbaee83</originalsourceid><addsrcrecordid>eNqFkcFu1TAQRS0Eoq-FBT-AvIRF2rEd28kSCi2tKkCiCImNZTsTMHXiVzsRvN_qh_BNpH1tF0iI1d2ce0aaS8gzBvsMgB-4sN7nXAr-gKwYtLoC3vCHZAUAqhKSyx2yW8oPgLoWDB6THS6haQTXK3L5CWNf2VJwcHFDU08zfsMRs52woyXEC9oHl1MYaZ_TQLMduyV8CpGOdkxlyrOf5oyFTonacQprm22MGOnvq6p8R5z-4p6QR72NBZ_e5h75fPT2_PBddfbh-OTw1Vnla1Xzqm6dFK3zXspeg6t1I2XHVQcChOtsK1jTalC2V7Kpmw60diCFR9Z5ZxEbsUdebL3rnC5nLJMZQvEYox0xzcUwpZlctEL8H5VKLefbli_oyy3qcyolY2_WOQw2bwwDcz2GWcYwN2Ms7PNb7ewG7O7Ju-8vwMEW-Bkibv5tMq9PPt4pq20jlAl_3TdsvjBKCy3Nl_fHhr05P4XmqzSt-APL-qSD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1566855992</pqid></control><display><type>article</type><title>Self-assembly of regenerated silk fibroin from random coil nanostructures to antiparallel β-sheet nanostructures</title><source>Wiley</source><creator>Zhong, Jian ; Ma, Mengjia ; Li, Wenying ; Zhou, Juan ; Yan, Zhiqiang ; He, Dannong</creator><creatorcontrib>Zhong, Jian ; Ma, Mengjia ; Li, Wenying ; Zhou, Juan ; Yan, Zhiqiang ; He, Dannong</creatorcontrib><description>ABSTRACT In this work, we studied the effects of incubation concentration and time on the self‐assembly behaviors of regenerated silk fibroin (RSF). Our results showed the assembly ways of RSF were concentration‐dependent and there were four self‐assembly ways of RSF: (i) At relatively low concentration (≤0.015%), RSF molecules assembled into protofilaments (random coil), and then the thickness decreased and the secondary conformation changed to antiparallel β‐sheet; (ii) at the concentration of 0.015%, RSF molecules assembled into protofilaments (random coil), and then assembled into protofibrils (antiparallel β‐sheet). The protofibrils experienced the appearance and disappearance of phase periodic intervals in turn; (iii) at the concentration of 0.03%, RSF molecules assembled into bead‐like oligomers (random coil), and then assembled into protofibrils (antiparallel β‐sheet), and finally the height and phase periodic intervals of RSF protofibrils disappeared in turn; and (iv) at the relatively high concentration (≥0.15%), RSF molecules assembled into protofilaments (random coil), then aggregated into blurry cuboid‐like micelles (random coil), and finally self‐arranged to form smooth and clear cuboid‐like micelles (antiparallel β‐sheet). These results provide useful insights into the process by which the RSF molecules self‐assemble into protofilaments, protofibrils and micelles. Furthermore, our work will be beneficial to basic understanding of the nanoscale structure formations in different silk‐based biomaterials. © 2014 Wiley Periodicals, Inc. Biopolymers 101: 1181–1192, 2014.</description><identifier>ISSN: 0006-3525</identifier><identifier>EISSN: 1097-0282</identifier><identifier>DOI: 10.1002/bip.22532</identifier><identifier>PMID: 25088327</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Animals ; atomic force microscopy ; Biomedical materials ; Biopolymers ; Bombyx ; Circular Dichroism ; Coiling ; Fibroins - chemistry ; Fibroins - ultrastructure ; Intervals ; micelle ; Micelles ; Microscopy, Atomic Force ; Models, Molecular ; molecular self-assembly ; Nanostructure ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Protein Structure, Secondary ; protofibril ; protofilament ; Self assembly ; Silk fibroin ; Spectroscopy, Fourier Transform Infrared ; Temperature</subject><ispartof>Biopolymers, 2014-12, Vol.101 (12), p.1181-1192</ispartof><rights>2014 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4642-49b539bcc55f70b47855d26d0303bda93189706af65848d077b053ce1dcbaee83</citedby><cites>FETCH-LOGICAL-c4642-49b539bcc55f70b47855d26d0303bda93189706af65848d077b053ce1dcbaee83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25088327$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhong, Jian</creatorcontrib><creatorcontrib>Ma, Mengjia</creatorcontrib><creatorcontrib>Li, Wenying</creatorcontrib><creatorcontrib>Zhou, Juan</creatorcontrib><creatorcontrib>Yan, Zhiqiang</creatorcontrib><creatorcontrib>He, Dannong</creatorcontrib><title>Self-assembly of regenerated silk fibroin from random coil nanostructures to antiparallel β-sheet nanostructures</title><title>Biopolymers</title><addtitle>Biopolymers</addtitle><description>ABSTRACT In this work, we studied the effects of incubation concentration and time on the self‐assembly behaviors of regenerated silk fibroin (RSF). Our results showed the assembly ways of RSF were concentration‐dependent and there were four self‐assembly ways of RSF: (i) At relatively low concentration (≤0.015%), RSF molecules assembled into protofilaments (random coil), and then the thickness decreased and the secondary conformation changed to antiparallel β‐sheet; (ii) at the concentration of 0.015%, RSF molecules assembled into protofilaments (random coil), and then assembled into protofibrils (antiparallel β‐sheet). The protofibrils experienced the appearance and disappearance of phase periodic intervals in turn; (iii) at the concentration of 0.03%, RSF molecules assembled into bead‐like oligomers (random coil), and then assembled into protofibrils (antiparallel β‐sheet), and finally the height and phase periodic intervals of RSF protofibrils disappeared in turn; and (iv) at the relatively high concentration (≥0.15%), RSF molecules assembled into protofilaments (random coil), then aggregated into blurry cuboid‐like micelles (random coil), and finally self‐arranged to form smooth and clear cuboid‐like micelles (antiparallel β‐sheet). These results provide useful insights into the process by which the RSF molecules self‐assemble into protofilaments, protofibrils and micelles. Furthermore, our work will be beneficial to basic understanding of the nanoscale structure formations in different silk‐based biomaterials. © 2014 Wiley Periodicals, Inc. Biopolymers 101: 1181–1192, 2014.</description><subject>Animals</subject><subject>atomic force microscopy</subject><subject>Biomedical materials</subject><subject>Biopolymers</subject><subject>Bombyx</subject><subject>Circular Dichroism</subject><subject>Coiling</subject><subject>Fibroins - chemistry</subject><subject>Fibroins - ultrastructure</subject><subject>Intervals</subject><subject>micelle</subject><subject>Micelles</subject><subject>Microscopy, Atomic Force</subject><subject>Models, Molecular</subject><subject>molecular self-assembly</subject><subject>Nanostructure</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Protein Structure, Secondary</subject><subject>protofibril</subject><subject>protofilament</subject><subject>Self assembly</subject><subject>Silk fibroin</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Temperature</subject><issn>0006-3525</issn><issn>1097-0282</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu1TAQRS0Eoq-FBT-AvIRF2rEd28kSCi2tKkCiCImNZTsTMHXiVzsRvN_qh_BNpH1tF0iI1d2ce0aaS8gzBvsMgB-4sN7nXAr-gKwYtLoC3vCHZAUAqhKSyx2yW8oPgLoWDB6THS6haQTXK3L5CWNf2VJwcHFDU08zfsMRs52woyXEC9oHl1MYaZ_TQLMduyV8CpGOdkxlyrOf5oyFTonacQprm22MGOnvq6p8R5z-4p6QR72NBZ_e5h75fPT2_PBddfbh-OTw1Vnla1Xzqm6dFK3zXspeg6t1I2XHVQcChOtsK1jTalC2V7Kpmw60diCFR9Z5ZxEbsUdebL3rnC5nLJMZQvEYox0xzcUwpZlctEL8H5VKLefbli_oyy3qcyolY2_WOQw2bwwDcz2GWcYwN2Ms7PNb7ewG7O7Ju-8vwMEW-Bkibv5tMq9PPt4pq20jlAl_3TdsvjBKCy3Nl_fHhr05P4XmqzSt-APL-qSD</recordid><startdate>201412</startdate><enddate>201412</enddate><creator>Zhong, Jian</creator><creator>Ma, Mengjia</creator><creator>Li, Wenying</creator><creator>Zhou, Juan</creator><creator>Yan, Zhiqiang</creator><creator>He, Dannong</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>201412</creationdate><title>Self-assembly of regenerated silk fibroin from random coil nanostructures to antiparallel β-sheet nanostructures</title><author>Zhong, Jian ; Ma, Mengjia ; Li, Wenying ; Zhou, Juan ; Yan, Zhiqiang ; He, Dannong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4642-49b539bcc55f70b47855d26d0303bda93189706af65848d077b053ce1dcbaee83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>atomic force microscopy</topic><topic>Biomedical materials</topic><topic>Biopolymers</topic><topic>Bombyx</topic><topic>Circular Dichroism</topic><topic>Coiling</topic><topic>Fibroins - chemistry</topic><topic>Fibroins - ultrastructure</topic><topic>Intervals</topic><topic>micelle</topic><topic>Micelles</topic><topic>Microscopy, Atomic Force</topic><topic>Models, Molecular</topic><topic>molecular self-assembly</topic><topic>Nanostructure</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Protein Structure, Secondary</topic><topic>protofibril</topic><topic>protofilament</topic><topic>Self assembly</topic><topic>Silk fibroin</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Jian</creatorcontrib><creatorcontrib>Ma, Mengjia</creatorcontrib><creatorcontrib>Li, Wenying</creatorcontrib><creatorcontrib>Zhou, Juan</creatorcontrib><creatorcontrib>Yan, Zhiqiang</creatorcontrib><creatorcontrib>He, Dannong</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Biopolymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Jian</au><au>Ma, Mengjia</au><au>Li, Wenying</au><au>Zhou, Juan</au><au>Yan, Zhiqiang</au><au>He, Dannong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-assembly of regenerated silk fibroin from random coil nanostructures to antiparallel β-sheet nanostructures</atitle><jtitle>Biopolymers</jtitle><addtitle>Biopolymers</addtitle><date>2014-12</date><risdate>2014</risdate><volume>101</volume><issue>12</issue><spage>1181</spage><epage>1192</epage><pages>1181-1192</pages><issn>0006-3525</issn><eissn>1097-0282</eissn><abstract>ABSTRACT In this work, we studied the effects of incubation concentration and time on the self‐assembly behaviors of regenerated silk fibroin (RSF). Our results showed the assembly ways of RSF were concentration‐dependent and there were four self‐assembly ways of RSF: (i) At relatively low concentration (≤0.015%), RSF molecules assembled into protofilaments (random coil), and then the thickness decreased and the secondary conformation changed to antiparallel β‐sheet; (ii) at the concentration of 0.015%, RSF molecules assembled into protofilaments (random coil), and then assembled into protofibrils (antiparallel β‐sheet). The protofibrils experienced the appearance and disappearance of phase periodic intervals in turn; (iii) at the concentration of 0.03%, RSF molecules assembled into bead‐like oligomers (random coil), and then assembled into protofibrils (antiparallel β‐sheet), and finally the height and phase periodic intervals of RSF protofibrils disappeared in turn; and (iv) at the relatively high concentration (≥0.15%), RSF molecules assembled into protofilaments (random coil), then aggregated into blurry cuboid‐like micelles (random coil), and finally self‐arranged to form smooth and clear cuboid‐like micelles (antiparallel β‐sheet). These results provide useful insights into the process by which the RSF molecules self‐assemble into protofilaments, protofibrils and micelles. Furthermore, our work will be beneficial to basic understanding of the nanoscale structure formations in different silk‐based biomaterials. © 2014 Wiley Periodicals, Inc. Biopolymers 101: 1181–1192, 2014.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>25088327</pmid><doi>10.1002/bip.22532</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3525
ispartof Biopolymers, 2014-12, Vol.101 (12), p.1181-1192
issn 0006-3525
1097-0282
language eng
recordid cdi_proquest_miscellaneous_1671547833
source Wiley
subjects Animals
atomic force microscopy
Biomedical materials
Biopolymers
Bombyx
Circular Dichroism
Coiling
Fibroins - chemistry
Fibroins - ultrastructure
Intervals
micelle
Micelles
Microscopy, Atomic Force
Models, Molecular
molecular self-assembly
Nanostructure
Nanostructures - chemistry
Nanostructures - ultrastructure
Protein Structure, Secondary
protofibril
protofilament
Self assembly
Silk fibroin
Spectroscopy, Fourier Transform Infrared
Temperature
title Self-assembly of regenerated silk fibroin from random coil nanostructures to antiparallel β-sheet nanostructures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T21%3A23%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-assembly%20of%20regenerated%20silk%20fibroin%20from%20random%20coil%20nanostructures%20to%20antiparallel%20%CE%B2-sheet%20nanostructures&rft.jtitle=Biopolymers&rft.au=Zhong,%20Jian&rft.date=2014-12&rft.volume=101&rft.issue=12&rft.spage=1181&rft.epage=1192&rft.pages=1181-1192&rft.issn=0006-3525&rft.eissn=1097-0282&rft_id=info:doi/10.1002/bip.22532&rft_dat=%3Cproquest_cross%3E1566855992%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4642-49b539bcc55f70b47855d26d0303bda93189706af65848d077b053ce1dcbaee83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1566855992&rft_id=info:pmid/25088327&rfr_iscdi=true