Loading…

Nonuniform Compressive Sensing for Heterogeneous Wireless Sensor Networks

In this paper, we consider the problem of using wireless sensor networks (WSNs) to measure the temporal-spatial profile of some physical phenomena. We base our work on two observations. First, most physical phenomena are compressible in some transform domain basis. Second, most WSNs have some form o...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal 2013-06, Vol.13 (6), p.2120-2128
Main Authors: Yiran Shen, Wen Hu, Rana, R., Chun Tung Chou
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c359t-5ec95fdb7520af4607f9974ab5f28f96f8b5d697b593e71896753cf6fd4deebf3
cites cdi_FETCH-LOGICAL-c359t-5ec95fdb7520af4607f9974ab5f28f96f8b5d697b593e71896753cf6fd4deebf3
container_end_page 2128
container_issue 6
container_start_page 2120
container_title IEEE sensors journal
container_volume 13
creator Yiran Shen
Wen Hu
Rana, R.
Chun Tung Chou
description In this paper, we consider the problem of using wireless sensor networks (WSNs) to measure the temporal-spatial profile of some physical phenomena. We base our work on two observations. First, most physical phenomena are compressible in some transform domain basis. Second, most WSNs have some form of heterogeneity. Given these two observations, we propose a nonuniform compressive sensing method to improve the performance of WSNs by exploiting both compressibility and heterogeneity. We apply our proposed method to real WSN data sets. We find that our method can provide a more accurate temporal-spatial profile for a given energy budget compared with other sampling methods.
doi_str_mv 10.1109/JSEN.2013.2248253
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671551133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6469154</ieee_id><sourcerecordid>2952419911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-5ec95fdb7520af4607f9974ab5f28f96f8b5d697b593e71896753cf6fd4deebf3</originalsourceid><addsrcrecordid>eNqF0T1PwzAQBuAIgUQp_ADEEomFJcUXx18jqgotqspQEGxRPs5VShoXOwHx73HaioGFyZbuOftObxBcAhkBEHX7uJwsRjEBOorjRMaMHgUDYExGIBJ53N8piRIq3k6DM-fWhIASTAyC2cI0XVNpYzfh2Gy2Fp2rPjFcYuOqZhX6QjjFFq1ZYYOmc-FrZbH2akd8dYHtl7Hv7jw40Vnt8OJwDoOX-8nzeBrNnx5m47t5VFCm2ohhoZguc8FikumEE6GVEkmWMx1LrbiWOSu5EjlTFAVIxQWjhea6TErEXNNhcLN_d2vNR4euTTeVK7Cus918KXDhFweg9H9KOQP_D5OeXv-ha9PZxi_iFZUgOZDYK9irwhrnLOp0a6tNZr9TIGmfQ9rnkPY5pIccfM_VvqdCxF_PE66AJfQH76mD9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1338186102</pqid></control><display><type>article</type><title>Nonuniform Compressive Sensing for Heterogeneous Wireless Sensor Networks</title><source>IEEE Xplore (Online service)</source><creator>Yiran Shen ; Wen Hu ; Rana, R. ; Chun Tung Chou</creator><creatorcontrib>Yiran Shen ; Wen Hu ; Rana, R. ; Chun Tung Chou</creatorcontrib><description>In this paper, we consider the problem of using wireless sensor networks (WSNs) to measure the temporal-spatial profile of some physical phenomena. We base our work on two observations. First, most physical phenomena are compressible in some transform domain basis. Second, most WSNs have some form of heterogeneity. Given these two observations, we propose a nonuniform compressive sensing method to improve the performance of WSNs by exploiting both compressibility and heterogeneity. We apply our proposed method to real WSN data sets. We find that our method can provide a more accurate temporal-spatial profile for a given energy budget compared with other sampling methods.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2013.2248253</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Compressed sensing ; Compressibility ; Compressive sensing (CS) ; Detection ; Energy budgets ; Energy consumption ; Heterogeneity ; Nonuniform ; nonuniformal sampling ; Remote sensors ; sample schedule ; Sensors ; Transforms ; Vectors ; Wind speed ; Wireless networks ; Wireless sensor networks</subject><ispartof>IEEE sensors journal, 2013-06, Vol.13 (6), p.2120-2128</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-5ec95fdb7520af4607f9974ab5f28f96f8b5d697b593e71896753cf6fd4deebf3</citedby><cites>FETCH-LOGICAL-c359t-5ec95fdb7520af4607f9974ab5f28f96f8b5d697b593e71896753cf6fd4deebf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6469154$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Yiran Shen</creatorcontrib><creatorcontrib>Wen Hu</creatorcontrib><creatorcontrib>Rana, R.</creatorcontrib><creatorcontrib>Chun Tung Chou</creatorcontrib><title>Nonuniform Compressive Sensing for Heterogeneous Wireless Sensor Networks</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>In this paper, we consider the problem of using wireless sensor networks (WSNs) to measure the temporal-spatial profile of some physical phenomena. We base our work on two observations. First, most physical phenomena are compressible in some transform domain basis. Second, most WSNs have some form of heterogeneity. Given these two observations, we propose a nonuniform compressive sensing method to improve the performance of WSNs by exploiting both compressibility and heterogeneity. We apply our proposed method to real WSN data sets. We find that our method can provide a more accurate temporal-spatial profile for a given energy budget compared with other sampling methods.</description><subject>Compressed sensing</subject><subject>Compressibility</subject><subject>Compressive sensing (CS)</subject><subject>Detection</subject><subject>Energy budgets</subject><subject>Energy consumption</subject><subject>Heterogeneity</subject><subject>Nonuniform</subject><subject>nonuniformal sampling</subject><subject>Remote sensors</subject><subject>sample schedule</subject><subject>Sensors</subject><subject>Transforms</subject><subject>Vectors</subject><subject>Wind speed</subject><subject>Wireless networks</subject><subject>Wireless sensor networks</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqF0T1PwzAQBuAIgUQp_ADEEomFJcUXx18jqgotqspQEGxRPs5VShoXOwHx73HaioGFyZbuOftObxBcAhkBEHX7uJwsRjEBOorjRMaMHgUDYExGIBJ53N8piRIq3k6DM-fWhIASTAyC2cI0XVNpYzfh2Gy2Fp2rPjFcYuOqZhX6QjjFFq1ZYYOmc-FrZbH2akd8dYHtl7Hv7jw40Vnt8OJwDoOX-8nzeBrNnx5m47t5VFCm2ohhoZguc8FikumEE6GVEkmWMx1LrbiWOSu5EjlTFAVIxQWjhea6TErEXNNhcLN_d2vNR4euTTeVK7Cus918KXDhFweg9H9KOQP_D5OeXv-ha9PZxi_iFZUgOZDYK9irwhrnLOp0a6tNZr9TIGmfQ9rnkPY5pIccfM_VvqdCxF_PE66AJfQH76mD9w</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Yiran Shen</creator><creator>Wen Hu</creator><creator>Rana, R.</creator><creator>Chun Tung Chou</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20130601</creationdate><title>Nonuniform Compressive Sensing for Heterogeneous Wireless Sensor Networks</title><author>Yiran Shen ; Wen Hu ; Rana, R. ; Chun Tung Chou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-5ec95fdb7520af4607f9974ab5f28f96f8b5d697b593e71896753cf6fd4deebf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Compressed sensing</topic><topic>Compressibility</topic><topic>Compressive sensing (CS)</topic><topic>Detection</topic><topic>Energy budgets</topic><topic>Energy consumption</topic><topic>Heterogeneity</topic><topic>Nonuniform</topic><topic>nonuniformal sampling</topic><topic>Remote sensors</topic><topic>sample schedule</topic><topic>Sensors</topic><topic>Transforms</topic><topic>Vectors</topic><topic>Wind speed</topic><topic>Wireless networks</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yiran Shen</creatorcontrib><creatorcontrib>Wen Hu</creatorcontrib><creatorcontrib>Rana, R.</creatorcontrib><creatorcontrib>Chun Tung Chou</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yiran Shen</au><au>Wen Hu</au><au>Rana, R.</au><au>Chun Tung Chou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonuniform Compressive Sensing for Heterogeneous Wireless Sensor Networks</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2013-06-01</date><risdate>2013</risdate><volume>13</volume><issue>6</issue><spage>2120</spage><epage>2128</epage><pages>2120-2128</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>In this paper, we consider the problem of using wireless sensor networks (WSNs) to measure the temporal-spatial profile of some physical phenomena. We base our work on two observations. First, most physical phenomena are compressible in some transform domain basis. Second, most WSNs have some form of heterogeneity. Given these two observations, we propose a nonuniform compressive sensing method to improve the performance of WSNs by exploiting both compressibility and heterogeneity. We apply our proposed method to real WSN data sets. We find that our method can provide a more accurate temporal-spatial profile for a given energy budget compared with other sampling methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2013.2248253</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2013-06, Vol.13 (6), p.2120-2128
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_miscellaneous_1671551133
source IEEE Xplore (Online service)
subjects Compressed sensing
Compressibility
Compressive sensing (CS)
Detection
Energy budgets
Energy consumption
Heterogeneity
Nonuniform
nonuniformal sampling
Remote sensors
sample schedule
Sensors
Transforms
Vectors
Wind speed
Wireless networks
Wireless sensor networks
title Nonuniform Compressive Sensing for Heterogeneous Wireless Sensor Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A44%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonuniform%20Compressive%20Sensing%20for%20Heterogeneous%20Wireless%20Sensor%20Networks&rft.jtitle=IEEE%20sensors%20journal&rft.au=Yiran%20Shen&rft.date=2013-06-01&rft.volume=13&rft.issue=6&rft.spage=2120&rft.epage=2128&rft.pages=2120-2128&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2013.2248253&rft_dat=%3Cproquest_cross%3E2952419911%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-5ec95fdb7520af4607f9974ab5f28f96f8b5d697b593e71896753cf6fd4deebf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1338186102&rft_id=info:pmid/&rft_ieee_id=6469154&rfr_iscdi=true