Loading…
Nonuniform Compressive Sensing for Heterogeneous Wireless Sensor Networks
In this paper, we consider the problem of using wireless sensor networks (WSNs) to measure the temporal-spatial profile of some physical phenomena. We base our work on two observations. First, most physical phenomena are compressible in some transform domain basis. Second, most WSNs have some form o...
Saved in:
Published in: | IEEE sensors journal 2013-06, Vol.13 (6), p.2120-2128 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c359t-5ec95fdb7520af4607f9974ab5f28f96f8b5d697b593e71896753cf6fd4deebf3 |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-5ec95fdb7520af4607f9974ab5f28f96f8b5d697b593e71896753cf6fd4deebf3 |
container_end_page | 2128 |
container_issue | 6 |
container_start_page | 2120 |
container_title | IEEE sensors journal |
container_volume | 13 |
creator | Yiran Shen Wen Hu Rana, R. Chun Tung Chou |
description | In this paper, we consider the problem of using wireless sensor networks (WSNs) to measure the temporal-spatial profile of some physical phenomena. We base our work on two observations. First, most physical phenomena are compressible in some transform domain basis. Second, most WSNs have some form of heterogeneity. Given these two observations, we propose a nonuniform compressive sensing method to improve the performance of WSNs by exploiting both compressibility and heterogeneity. We apply our proposed method to real WSN data sets. We find that our method can provide a more accurate temporal-spatial profile for a given energy budget compared with other sampling methods. |
doi_str_mv | 10.1109/JSEN.2013.2248253 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671551133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6469154</ieee_id><sourcerecordid>2952419911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-5ec95fdb7520af4607f9974ab5f28f96f8b5d697b593e71896753cf6fd4deebf3</originalsourceid><addsrcrecordid>eNqF0T1PwzAQBuAIgUQp_ADEEomFJcUXx18jqgotqspQEGxRPs5VShoXOwHx73HaioGFyZbuOftObxBcAhkBEHX7uJwsRjEBOorjRMaMHgUDYExGIBJ53N8piRIq3k6DM-fWhIASTAyC2cI0XVNpYzfh2Gy2Fp2rPjFcYuOqZhX6QjjFFq1ZYYOmc-FrZbH2akd8dYHtl7Hv7jw40Vnt8OJwDoOX-8nzeBrNnx5m47t5VFCm2ohhoZguc8FikumEE6GVEkmWMx1LrbiWOSu5EjlTFAVIxQWjhea6TErEXNNhcLN_d2vNR4euTTeVK7Cus918KXDhFweg9H9KOQP_D5OeXv-ha9PZxi_iFZUgOZDYK9irwhrnLOp0a6tNZr9TIGmfQ9rnkPY5pIccfM_VvqdCxF_PE66AJfQH76mD9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1338186102</pqid></control><display><type>article</type><title>Nonuniform Compressive Sensing for Heterogeneous Wireless Sensor Networks</title><source>IEEE Xplore (Online service)</source><creator>Yiran Shen ; Wen Hu ; Rana, R. ; Chun Tung Chou</creator><creatorcontrib>Yiran Shen ; Wen Hu ; Rana, R. ; Chun Tung Chou</creatorcontrib><description>In this paper, we consider the problem of using wireless sensor networks (WSNs) to measure the temporal-spatial profile of some physical phenomena. We base our work on two observations. First, most physical phenomena are compressible in some transform domain basis. Second, most WSNs have some form of heterogeneity. Given these two observations, we propose a nonuniform compressive sensing method to improve the performance of WSNs by exploiting both compressibility and heterogeneity. We apply our proposed method to real WSN data sets. We find that our method can provide a more accurate temporal-spatial profile for a given energy budget compared with other sampling methods.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2013.2248253</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Compressed sensing ; Compressibility ; Compressive sensing (CS) ; Detection ; Energy budgets ; Energy consumption ; Heterogeneity ; Nonuniform ; nonuniformal sampling ; Remote sensors ; sample schedule ; Sensors ; Transforms ; Vectors ; Wind speed ; Wireless networks ; Wireless sensor networks</subject><ispartof>IEEE sensors journal, 2013-06, Vol.13 (6), p.2120-2128</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-5ec95fdb7520af4607f9974ab5f28f96f8b5d697b593e71896753cf6fd4deebf3</citedby><cites>FETCH-LOGICAL-c359t-5ec95fdb7520af4607f9974ab5f28f96f8b5d697b593e71896753cf6fd4deebf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6469154$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Yiran Shen</creatorcontrib><creatorcontrib>Wen Hu</creatorcontrib><creatorcontrib>Rana, R.</creatorcontrib><creatorcontrib>Chun Tung Chou</creatorcontrib><title>Nonuniform Compressive Sensing for Heterogeneous Wireless Sensor Networks</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>In this paper, we consider the problem of using wireless sensor networks (WSNs) to measure the temporal-spatial profile of some physical phenomena. We base our work on two observations. First, most physical phenomena are compressible in some transform domain basis. Second, most WSNs have some form of heterogeneity. Given these two observations, we propose a nonuniform compressive sensing method to improve the performance of WSNs by exploiting both compressibility and heterogeneity. We apply our proposed method to real WSN data sets. We find that our method can provide a more accurate temporal-spatial profile for a given energy budget compared with other sampling methods.</description><subject>Compressed sensing</subject><subject>Compressibility</subject><subject>Compressive sensing (CS)</subject><subject>Detection</subject><subject>Energy budgets</subject><subject>Energy consumption</subject><subject>Heterogeneity</subject><subject>Nonuniform</subject><subject>nonuniformal sampling</subject><subject>Remote sensors</subject><subject>sample schedule</subject><subject>Sensors</subject><subject>Transforms</subject><subject>Vectors</subject><subject>Wind speed</subject><subject>Wireless networks</subject><subject>Wireless sensor networks</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqF0T1PwzAQBuAIgUQp_ADEEomFJcUXx18jqgotqspQEGxRPs5VShoXOwHx73HaioGFyZbuOftObxBcAhkBEHX7uJwsRjEBOorjRMaMHgUDYExGIBJ53N8piRIq3k6DM-fWhIASTAyC2cI0XVNpYzfh2Gy2Fp2rPjFcYuOqZhX6QjjFFq1ZYYOmc-FrZbH2akd8dYHtl7Hv7jw40Vnt8OJwDoOX-8nzeBrNnx5m47t5VFCm2ohhoZguc8FikumEE6GVEkmWMx1LrbiWOSu5EjlTFAVIxQWjhea6TErEXNNhcLN_d2vNR4euTTeVK7Cus918KXDhFweg9H9KOQP_D5OeXv-ha9PZxi_iFZUgOZDYK9irwhrnLOp0a6tNZr9TIGmfQ9rnkPY5pIccfM_VvqdCxF_PE66AJfQH76mD9w</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Yiran Shen</creator><creator>Wen Hu</creator><creator>Rana, R.</creator><creator>Chun Tung Chou</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20130601</creationdate><title>Nonuniform Compressive Sensing for Heterogeneous Wireless Sensor Networks</title><author>Yiran Shen ; Wen Hu ; Rana, R. ; Chun Tung Chou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-5ec95fdb7520af4607f9974ab5f28f96f8b5d697b593e71896753cf6fd4deebf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Compressed sensing</topic><topic>Compressibility</topic><topic>Compressive sensing (CS)</topic><topic>Detection</topic><topic>Energy budgets</topic><topic>Energy consumption</topic><topic>Heterogeneity</topic><topic>Nonuniform</topic><topic>nonuniformal sampling</topic><topic>Remote sensors</topic><topic>sample schedule</topic><topic>Sensors</topic><topic>Transforms</topic><topic>Vectors</topic><topic>Wind speed</topic><topic>Wireless networks</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yiran Shen</creatorcontrib><creatorcontrib>Wen Hu</creatorcontrib><creatorcontrib>Rana, R.</creatorcontrib><creatorcontrib>Chun Tung Chou</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yiran Shen</au><au>Wen Hu</au><au>Rana, R.</au><au>Chun Tung Chou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonuniform Compressive Sensing for Heterogeneous Wireless Sensor Networks</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2013-06-01</date><risdate>2013</risdate><volume>13</volume><issue>6</issue><spage>2120</spage><epage>2128</epage><pages>2120-2128</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>In this paper, we consider the problem of using wireless sensor networks (WSNs) to measure the temporal-spatial profile of some physical phenomena. We base our work on two observations. First, most physical phenomena are compressible in some transform domain basis. Second, most WSNs have some form of heterogeneity. Given these two observations, we propose a nonuniform compressive sensing method to improve the performance of WSNs by exploiting both compressibility and heterogeneity. We apply our proposed method to real WSN data sets. We find that our method can provide a more accurate temporal-spatial profile for a given energy budget compared with other sampling methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2013.2248253</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2013-06, Vol.13 (6), p.2120-2128 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671551133 |
source | IEEE Xplore (Online service) |
subjects | Compressed sensing Compressibility Compressive sensing (CS) Detection Energy budgets Energy consumption Heterogeneity Nonuniform nonuniformal sampling Remote sensors sample schedule Sensors Transforms Vectors Wind speed Wireless networks Wireless sensor networks |
title | Nonuniform Compressive Sensing for Heterogeneous Wireless Sensor Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A44%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonuniform%20Compressive%20Sensing%20for%20Heterogeneous%20Wireless%20Sensor%20Networks&rft.jtitle=IEEE%20sensors%20journal&rft.au=Yiran%20Shen&rft.date=2013-06-01&rft.volume=13&rft.issue=6&rft.spage=2120&rft.epage=2128&rft.pages=2120-2128&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2013.2248253&rft_dat=%3Cproquest_cross%3E2952419911%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-5ec95fdb7520af4607f9974ab5f28f96f8b5d697b593e71896753cf6fd4deebf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1338186102&rft_id=info:pmid/&rft_ieee_id=6469154&rfr_iscdi=true |