Loading…
Estimation of Distribution Algorithms for Knapsack Problem
Estimation of distribution algorithms ( EDAs ) is a new kind of evolution algorithm. In EDAs , through the statistics of the information of selected individuals in current group, the probability of the individual distribution in next generation is given and the next generation of group is formed by...
Saved in:
Published in: | Journal of software 2014-01, Vol.9 (1), p.104-104 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Estimation of distribution algorithms ( EDAs ) is a new kind of evolution algorithm. In EDAs , through the statistics of the information of selected individuals in current group, the probability of the individual distribution in next generation is given and the next generation of group is formed by random sampling. A wide range of mathematical model of the knapsack problem are proposed. In this paper, the EDAs is applied to solve the knapsack problem. The influence of several strategies, such as numbers of population and better population selection proportions are analyzed. Simulation results show that the EDAs is reliable and effective for solving the knapsack problem. The Maltab code is given also. It can easily be modified for any combinatorial problem for which we have no good specialized algorithm. Index Terms-estimation distribution algorithm, knapsack problem, genetic algorithm |
---|---|
ISSN: | 1796-217X 1796-217X |
DOI: | 10.4304/jsw.9.1.104-110 |