Loading…
Simulation optimization of a multi-stage multi-product paint shop line with Response Surface Methodology
Recently, Response Surface Methodology (RSM) has attracted a growing interest, along with other simulation optimization (SO) techniques, for non-parametric modeling and robust optimization of systems. In the optimization stage of this study, the authors use RSM to find optimum working conditions of...
Saved in:
Published in: | Simulation (San Diego, Calif.) Calif.), 2014-03, Vol.90 (3), p.265-274 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recently, Response Surface Methodology (RSM) has attracted a growing interest, along with other simulation optimization (SO) techniques, for non-parametric modeling and robust optimization of systems. In the optimization stage of this study, the authors use RSM to find optimum working conditions of a system. The authors also use discrete event simulation modeling, optimization stage integration, design of experiment (DOE) and sensitivity analysis (a) to investigate the behavior of a real paint shop production line via construction of response surface plots and (b) to reveal the influence of input variables, as well as to determine interaction effects between them. The proposed approach presents an approximation model management structure for the computation-intensive optimization problem of an automotive factory with reduced variance, computational cost and amount of effort. |
---|---|
ISSN: | 0037-5497 1741-3133 |
DOI: | 10.1177/0037549713516508 |