Loading…
Assessing Computational Methods for Transcription Factor Target Gene Identification Based on ChIP-seq Data: e1003342
Chromatin immunoprecipitation coupled with deep sequencing (ChIP-seq) has great potential for elucidating transcriptional networks, by measuring genome-wide binding of transcription factors (TFs) at high resolution. Despite the precision of these experiments, identification of genes directly regulat...
Saved in:
Published in: | PLoS computational biology 2013-11, Vol.9 (11) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Chromatin immunoprecipitation coupled with deep sequencing (ChIP-seq) has great potential for elucidating transcriptional networks, by measuring genome-wide binding of transcription factors (TFs) at high resolution. Despite the precision of these experiments, identification of genes directly regulated by a TF (target genes) is not trivial. Numerous target gene scoring methods have been used in the past. However, their suitability for the task and their performance remain unclear, because a thorough comparative assessment of these methods is still lacking. Here we present a systematic evaluation of computational methods for defining TF targets based on ChIP-seq data. We validated predictions based on 68 ChIP-seq studies using a wide range of genomic expression data and functional information. We demonstrate that peak-to-gene assignment is the most crucial step for correct target gene prediction and propose a parameter-free method performing most consistently across the evaluation tests. |
---|---|
ISSN: | 1553-734X 1553-7358 |
DOI: | 10.1371/journal.pcbi.1003342 |