Loading…
Time-Varying Multifractal Characteristics and Formation Mechanism of Loaded Coal Electromagnetic Radiation
Dynamic collapses of deeply mined coal rocks are severe threats to miners. To predict the collapses more accurately using electromagnetic radiation (EMR), we investigate the time-varying multifractal characteristics and formation mechanism of EMR induced by underground coal mining. A series of uniax...
Saved in:
Published in: | Rock mechanics and rock engineering 2014-09, Vol.47 (5), p.1821-1838 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Dynamic collapses of deeply mined coal rocks are severe threats to miners. To predict the collapses more accurately using electromagnetic radiation (EMR), we investigate the time-varying multifractal characteristics and formation mechanism of EMR induced by underground coal mining. A series of uniaxial compression and multi-stage loading experiments with coal samples of different mechanical properties were carried out. The EMR signals during their damage evolution were monitored in real-time; the inherent law of EMR time series was analyzed by fractal theory. The results show that the time-varying multifractal characteristics of EMR are determined by damage evolutions process, the dissipated energy caused by damage evolutions such as crack propagation, fractal sliding and shearing can be regard as the fingerprint of various EMR micro-mechanics. Based on the Irreversible thermodynamics and damage mechanics, we introduced the damage internal variable, constructed the dissipative potential function and established the coupled model of the EMR and the dissipative energy, which revealed the nature of dynamic nonlinear characteristics of EMR. Dynamic multifractal spectrum is the objective response of EMR signals, thus it can be used to evaluate the coal deformation and fracture process. |
---|---|
ISSN: | 0723-2632 1434-453X |
DOI: | 10.1007/s00603-013-0501-9 |