Loading…
An Atmospheric Correction Method for Medium Resolution Spectral Imager Thermal IR Soundings
Based on the thermal radiative transfer equation (RTE), a new atmospheric correction method named Single Band Water Vapor Dependent (SBWVD) method is developed for land surface temperature (LST) retrieval for the FY-3A Medium Resolution Spectral Imager (MERSI) with only one thermal infrared (TIR) ch...
Saved in:
Published in: | Key engineering materials 2012-01, Vol.500, p.397-402 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Based on the thermal radiative transfer equation (RTE), a new atmospheric correction method named Single Band Water Vapor Dependent (SBWVD) method is developed for land surface temperature (LST) retrieval for the FY-3A Medium Resolution Spectral Imager (MERSI) with only one thermal infrared (TIR) channel. Assuming that the surface emissivity is known, water vapor content (WVC) is the only one parameter for input to the SBWVD algorithm to retrieve LST from MERSI TIR observations. FY-3A MERSI Level 2 water vapor product is employed to evaluate the performance of the proposed method, and a 2-D data interpolation procedure is applied in order to match the MERSI L1B data in spatial resolution. Some tests, including numerical simulation for MERSI sensor and the synchronous measurements of MERSI and the radiosondes for the radiative calibration of the FY-3A tests in Qinghai Lake, have been carried out for the proposed algorithm, respectively. The results show that the difference between the retrieved LST and the in-situ measurements is less than 0.6 K for most situations. The comparison with the MODIS LST products (V5) shows that the root mean square error (RMSE) is under 0.72 K. Thus, our proposed new algorithm is applicable for the atmospheric correction and LST retrieval using MERSI TIR channel observations. |
---|---|
ISSN: | 1013-9826 1662-9795 1662-9795 |
DOI: | 10.4028/www.scientific.net/KEM.500.397 |