Loading…
Effects of heat accelerated aging on tensile strength of three dimensional braided/epoxy resin composites
The tensile tests of three‐dimensional (3Dim) and four‐directional (4Dir) carbon fiber braided/epoxy resin composites and carbon fiber woven plain fabric laminated/epoxy composites after heat accelerated aging at 150 and 180°C for 60, 120, and 180 h were carried out respectively. The reason of the c...
Saved in:
Published in: | Polymer composites 2012-09, Vol.33 (9), p.1635-1643 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The tensile tests of three‐dimensional (3Dim) and four‐directional (4Dir) carbon fiber braided/epoxy resin composites and carbon fiber woven plain fabric laminated/epoxy composites after heat accelerated aging at 150 and 180°C for 60, 120, and 180 h were carried out respectively. The reason of the changes of tensile property of these composites after different aging period of time at different high temperature was explained. The results of two‐way ANOVA analyzing indicate that the aging time has a significant effect on tensile strength of these composites. With the increase of accelerated aging period of time at high temperature, the tensile strengths of these composite samples decreased compared with that of composite samples without aging. However the decrease of tensile strength of 3Dim and 4Dir braided composites is less than that of laminated composites. One of the reasons is after aging for a long time at high temperature, the resin is damaged and becomes brittle which make the bonding force between fiber and resin decrease. Another reason is the structure of reinforcement of composites. After aging, the structure of 3Dim and 4Dir braided/epoxy resin composites still keeps the integrity which makes the 3Dim and 4Dir composites have less tensile performance degradation (3Dim and 4 Dir: three‐dimensional and four‐directional). POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers |
---|---|
ISSN: | 0272-8397 1548-0569 |
DOI: | 10.1002/pc.22284 |