Loading…
Transitivity of varietal hypercube networks
The varietal hypercube VQn is a variant of the hypercube Qn and has better properties than Qn with the same number of edges and vertices. This paper proves that VQn is vertex-transitive. This property shows that when VQn is used to model an interconnection network, it is high symmetrical and obvious...
Saved in:
Published in: | Frontiers of mathematics in China 2014-12, Vol.9 (6), p.1401-1410 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c425t-e4079377f3f08418aec5afd496a6b954d80ed7d5415fb0104da486fdbd4716f03 |
---|---|
cites | cdi_FETCH-LOGICAL-c425t-e4079377f3f08418aec5afd496a6b954d80ed7d5415fb0104da486fdbd4716f03 |
container_end_page | 1410 |
container_issue | 6 |
container_start_page | 1401 |
container_title | Frontiers of mathematics in China |
container_volume | 9 |
creator | XIAO, Li CAO, Jin XU, Jun-Ming |
description | The varietal hypercube VQn is a variant of the hypercube Qn and has better properties than Qn with the same number of edges and vertices. This paper proves that VQn is vertex-transitive. This property shows that when VQn is used to model an interconnection network, it is high symmetrical and obviously superior to other variants of the hypercube such as the crossed cube. |
doi_str_mv | 10.1007/s11464-014-0427-x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671558815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>662654055</cqvip_id><sourcerecordid>3436208271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-e4079377f3f08418aec5afd496a6b954d80ed7d5415fb0104da486fdbd4716f03</originalsourceid><addsrcrecordid>eNp9kL1OwzAURi0EEqXwAGwRLEgoYCe-djKiij8JiaXMlpNcNylpktppad8eVykIMXSw7OGc6-9-hFwyescolfeOMS54SJk_PJLh5oiMmJBxGIMUxz9vDtEpOXNuTikwAemI3E6tblzVV-uq3watCdbaVtjrOii3Hdp8lWHQYP_V2k93Tk6Mrh1e7O8x-Xh6nE5ewrf359fJw1uY8wj6EDmVaSyliQ1NOEs05qBNwVOhRZYCLxKKhSyAMzAZZZQXmifCFFnBJROGxmNyM8ztbLtcoevVonI51rVusF055XdhAEnCwKPX_9B5u7KNT6cYiJjSKAHuKTZQuW2ds2hUZ6uFtlvFqNrVp4b6lK9P7epTG-9Eg-M828zQ_pl8QEoGqaxmJVosOovOKWPbpq_QHlav9hnLtpkt_Ze_IYWIBHAKEH8DfRKPew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1563002854</pqid></control><display><type>article</type><title>Transitivity of varietal hypercube networks</title><source>ABI/INFORM Global</source><creator>XIAO, Li ; CAO, Jin ; XU, Jun-Ming</creator><creatorcontrib>XIAO, Li ; CAO, Jin ; XU, Jun-Ming</creatorcontrib><description>The varietal hypercube VQn is a variant of the hypercube Qn and has better properties than Qn with the same number of edges and vertices. This paper proves that VQn is vertex-transitive. This property shows that when VQn is used to model an interconnection network, it is high symmetrical and obviously superior to other variants of the hypercube such as the crossed cube.</description><identifier>ISSN: 1673-3452</identifier><identifier>EISSN: 1673-3576</identifier><identifier>DOI: 10.1007/s11464-014-0427-x</identifier><language>eng</language><publisher>Heidelberg: Higher Education Press</publisher><subject>China ; Combinatorics ; Cubes ; graph ; Hypercubes ; Interconnection ; International ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Networks ; Research Article ; Studies ; transitivity ; varietal hypercube network ; 互连网络 ; 交叉立方体 ; 变体 ; 品种 ; 尺寸 ; 属性表 ; 点传递 ; 超立方体网络</subject><ispartof>Frontiers of mathematics in China, 2014-12, Vol.9 (6), p.1401-1410</ispartof><rights>Copyright reserved, 2014, Higher Education Press and Springer-Verlag Berlin Heidelberg</rights><rights>Higher Education Press and Springer-Verlag Berlin Heidelberg 2014</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-e4079377f3f08418aec5afd496a6b954d80ed7d5415fb0104da486fdbd4716f03</citedby><cites>FETCH-LOGICAL-c425t-e4079377f3f08418aec5afd496a6b954d80ed7d5415fb0104da486fdbd4716f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/71243X/71243X.jpg</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1563002854?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11668,27903,27904,36039,36040,44342</link.rule.ids></links><search><creatorcontrib>XIAO, Li</creatorcontrib><creatorcontrib>CAO, Jin</creatorcontrib><creatorcontrib>XU, Jun-Ming</creatorcontrib><title>Transitivity of varietal hypercube networks</title><title>Frontiers of mathematics in China</title><addtitle>Front. Math. China</addtitle><addtitle>Frontiers of Mathematics in China</addtitle><description>The varietal hypercube VQn is a variant of the hypercube Qn and has better properties than Qn with the same number of edges and vertices. This paper proves that VQn is vertex-transitive. This property shows that when VQn is used to model an interconnection network, it is high symmetrical and obviously superior to other variants of the hypercube such as the crossed cube.</description><subject>China</subject><subject>Combinatorics</subject><subject>Cubes</subject><subject>graph</subject><subject>Hypercubes</subject><subject>Interconnection</subject><subject>International</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Networks</subject><subject>Research Article</subject><subject>Studies</subject><subject>transitivity</subject><subject>varietal hypercube network</subject><subject>互连网络</subject><subject>交叉立方体</subject><subject>变体</subject><subject>品种</subject><subject>尺寸</subject><subject>属性表</subject><subject>点传递</subject><subject>超立方体网络</subject><issn>1673-3452</issn><issn>1673-3576</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kL1OwzAURi0EEqXwAGwRLEgoYCe-djKiij8JiaXMlpNcNylpktppad8eVykIMXSw7OGc6-9-hFwyescolfeOMS54SJk_PJLh5oiMmJBxGIMUxz9vDtEpOXNuTikwAemI3E6tblzVV-uq3watCdbaVtjrOii3Hdp8lWHQYP_V2k93Tk6Mrh1e7O8x-Xh6nE5ewrf359fJw1uY8wj6EDmVaSyliQ1NOEs05qBNwVOhRZYCLxKKhSyAMzAZZZQXmifCFFnBJROGxmNyM8ztbLtcoevVonI51rVusF055XdhAEnCwKPX_9B5u7KNT6cYiJjSKAHuKTZQuW2ds2hUZ6uFtlvFqNrVp4b6lK9P7epTG-9Eg-M828zQ_pl8QEoGqaxmJVosOovOKWPbpq_QHlav9hnLtpkt_Ze_IYWIBHAKEH8DfRKPew</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>XIAO, Li</creator><creator>CAO, Jin</creator><creator>XU, Jun-Ming</creator><general>Higher Education Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20141201</creationdate><title>Transitivity of varietal hypercube networks</title><author>XIAO, Li ; CAO, Jin ; XU, Jun-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-e4079377f3f08418aec5afd496a6b954d80ed7d5415fb0104da486fdbd4716f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>China</topic><topic>Combinatorics</topic><topic>Cubes</topic><topic>graph</topic><topic>Hypercubes</topic><topic>Interconnection</topic><topic>International</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Networks</topic><topic>Research Article</topic><topic>Studies</topic><topic>transitivity</topic><topic>varietal hypercube network</topic><topic>互连网络</topic><topic>交叉立方体</topic><topic>变体</topic><topic>品种</topic><topic>尺寸</topic><topic>属性表</topic><topic>点传递</topic><topic>超立方体网络</topic><toplevel>online_resources</toplevel><creatorcontrib>XIAO, Li</creatorcontrib><creatorcontrib>CAO, Jin</creatorcontrib><creatorcontrib>XU, Jun-Ming</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Frontiers of mathematics in China</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>XIAO, Li</au><au>CAO, Jin</au><au>XU, Jun-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transitivity of varietal hypercube networks</atitle><jtitle>Frontiers of mathematics in China</jtitle><stitle>Front. Math. China</stitle><addtitle>Frontiers of Mathematics in China</addtitle><date>2014-12-01</date><risdate>2014</risdate><volume>9</volume><issue>6</issue><spage>1401</spage><epage>1410</epage><pages>1401-1410</pages><issn>1673-3452</issn><eissn>1673-3576</eissn><abstract>The varietal hypercube VQn is a variant of the hypercube Qn and has better properties than Qn with the same number of edges and vertices. This paper proves that VQn is vertex-transitive. This property shows that when VQn is used to model an interconnection network, it is high symmetrical and obviously superior to other variants of the hypercube such as the crossed cube.</abstract><cop>Heidelberg</cop><pub>Higher Education Press</pub><doi>10.1007/s11464-014-0427-x</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1673-3452 |
ispartof | Frontiers of mathematics in China, 2014-12, Vol.9 (6), p.1401-1410 |
issn | 1673-3452 1673-3576 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671558815 |
source | ABI/INFORM Global |
subjects | China Combinatorics Cubes graph Hypercubes Interconnection International Mathematical models Mathematics Mathematics and Statistics Networks Research Article Studies transitivity varietal hypercube network 互连网络 交叉立方体 变体 品种 尺寸 属性表 点传递 超立方体网络 |
title | Transitivity of varietal hypercube networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A01%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transitivity%20of%20varietal%20hypercube%20networks&rft.jtitle=Frontiers%20of%20mathematics%20in%20China&rft.au=XIAO,%20Li&rft.date=2014-12-01&rft.volume=9&rft.issue=6&rft.spage=1401&rft.epage=1410&rft.pages=1401-1410&rft.issn=1673-3452&rft.eissn=1673-3576&rft_id=info:doi/10.1007/s11464-014-0427-x&rft_dat=%3Cproquest_cross%3E3436208271%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c425t-e4079377f3f08418aec5afd496a6b954d80ed7d5415fb0104da486fdbd4716f03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1563002854&rft_id=info:pmid/&rft_cqvip_id=662654055&rfr_iscdi=true |