Loading…
Electrical transduction in nanomechanical resonators based on doubly clamped bottom-up silicon nanowires
The frequency response of double-clamped bottom-up grown silicon nanowires is measured electrically by means of a frequency modulation (FM) detection scheme. In comparison with other electrical methods, FM detection is simpler and it allows the use of smaller actuation signals. We have been able to...
Saved in:
Published in: | Applied physics letters 2012-12, Vol.101 (24) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The frequency response of double-clamped bottom-up grown silicon nanowires is measured electrically by means of a frequency modulation (FM) detection scheme. In comparison with other electrical methods, FM detection is simpler and it allows the use of smaller actuation signals. We have been able to resolve the first three mechanical resonance modes up to frequencies higher than 350 MHz. The FM detection scheme relies on a transduction mechanism that presents a linear dependence of the change of conductance with the nanowire deflection/actuation signal. The modeling of the system corroborates that two different transduction mechanisms (linear and quadratic) co-exist. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4771982 |