Loading…

Solvothermal growth of single-crystal CdS nanowires

Cadmium sulfide (CdS) nanowires (NWs) were prepared by the solvothermal method using ethylenediamine as a solvent. Two sets of CdS NWs were synthesized at 160 and 200 °C for various reaction durations (3⋅5, 7, and 24 h). Scanning/tunneling electron microscopy was used to examine the surface morpholo...

Full description

Saved in:
Bibliographic Details
Published in:Bulletin of materials science 2014-04, Vol.37 (2), p.337-345
Main Authors: MAHDI, M A, HASSAN, J J, KASIM, S J, NG, S S, HASSAN, Z
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cadmium sulfide (CdS) nanowires (NWs) were prepared by the solvothermal method using ethylenediamine as a solvent. Two sets of CdS NWs were synthesized at 160 and 200 °C for various reaction durations (3⋅5, 7, and 24 h). Scanning/tunneling electron microscopy was used to examine the surface morphology of the grown NWs. Their dimensions are found to depend on the reaction temperature and duration. The CdS NWs grown at 200 °C for all durations are longer than those prepared at 160 °C, with diameters ranging from 15 to 40 nm. A three-armed structure is exhibited by all the samples. The grown CdS NWs display a hexagonal wurtzite phase and grows along the 001 direction. The optical absorption of the grown NWs shows a sharp absorption edge with a blueshift, which indicates an expansion of the optical band gap. All prepared samples show two emission peaks in their photoluminescence spectra. The emission peak location depends on the reaction temperature and duration. The CdS NWs prepared at 160 °C show a sharp band–band emission compared with those prepared at 200 °C. Raman analysis indicates that the optical properties of the grown NWs are enhanced with increased temperature and reaction duration.
ISSN:0250-4707
0973-7669
DOI:10.1007/s12034-014-0655-4