Loading…
Nonparametric Regression with Interval-Censored Data
In many medical studies,the prevalence of interval censored data is increasing due to periodic monitoring of the progression status of a disease.In nonparametric regression model,when the response variable is subjected to interval-censoring,the regression function could not be estimated by tradition...
Saved in:
Published in: | Acta mathematica Sinica. English series 2014-08, Vol.30 (8), p.1422-1434 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c328t-33cb5558ea4255e20a861676fb0e8c223d04831f59b25532e5e50f95d408cddc3 |
container_end_page | 1434 |
container_issue | 8 |
container_start_page | 1422 |
container_title | Acta mathematica Sinica. English series |
container_volume | 30 |
creator | Deng, Wen Li Zheng, Zu Kang Zhang, Ri Quan |
description | In many medical studies,the prevalence of interval censored data is increasing due to periodic monitoring of the progression status of a disease.In nonparametric regression model,when the response variable is subjected to interval-censoring,the regression function could not be estimated by traditional methods directly.With the censored data,we construct a new response variable which has the same conditional expectation as the original one.Based on the new variable,we get a nearest neighbor estimator of the regression function.It is established that the estimator has strong consistency and asymptotic normality.The relevant simulation reports are given. |
doi_str_mv | 10.1007/s10114-014-0729-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671561852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>661686219</cqvip_id><sourcerecordid>3366279811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-33cb5558ea4255e20a861676fb0e8c223d04831f59b25532e5e50f95d408cddc3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsfwNuiFy-rmWSTzR6l_isUBdFzSLOz7ZY2aZOt4rc3ZYuIBw_DDMzvvRkeIedAr4HS8iYCBShyuquSVXl5QAZQ8DRIKA_3sxIgj8lJjAtKhaioHJDi2bu1CWaFXWht9oqzgDG23mWfbTfPxq7D8GGW-Qhd9AHr7M505pQcNWYZ8Wzfh-T94f5t9JRPXh7Ho9tJbjlTXc65nQohFJqCCYGMGiVBlrKZUlSWMV7TQnFoRDVNe85QoKBNJeqCKlvXlg_JVe-7Dn6zxdjpVRstLpfGod9GncxASFCCJfTyD7rw2-DSdxpEwSVQAZAo6CkbfIwBG70O7cqELw1U73LUfY6a7irlqMukYb0mJtbNMPxy_kd0sT809262SbqfSzJloCSDin8Dy0V-dw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1543610511</pqid></control><display><type>article</type><title>Nonparametric Regression with Interval-Censored Data</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Deng, Wen Li ; Zheng, Zu Kang ; Zhang, Ri Quan</creator><creatorcontrib>Deng, Wen Li ; Zheng, Zu Kang ; Zhang, Ri Quan</creatorcontrib><description>In many medical studies,the prevalence of interval censored data is increasing due to periodic monitoring of the progression status of a disease.In nonparametric regression model,when the response variable is subjected to interval-censoring,the regression function could not be estimated by traditional methods directly.With the censored data,we construct a new response variable which has the same conditional expectation as the original one.Based on the new variable,we get a nearest neighbor estimator of the regression function.It is established that the estimator has strong consistency and asymptotic normality.The relevant simulation reports are given.</description><identifier>ISSN: 1439-8516</identifier><identifier>EISSN: 1439-7617</identifier><identifier>DOI: 10.1007/s10114-014-0729-7</identifier><language>eng</language><publisher>Heidelberg: Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</publisher><subject>Asymptotic properties ; Consistency ; Data analysis ; Estimators ; Failure analysis ; Mathematical analysis ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Monitoring ; Progressions ; Random variables ; Regression ; Statistical analysis ; Studies ; Survival analysis ; Theorems ; 传统方法 ; 区间删失 ; 区间数据 ; 回归函数 ; 定期监测 ; 渐近正态性 ; 近邻估计 ; 非参数回归模型</subject><ispartof>Acta mathematica Sinica. English series, 2014-08, Vol.30 (8), p.1422-1434</ispartof><rights>Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c328t-33cb5558ea4255e20a861676fb0e8c223d04831f59b25532e5e50f95d408cddc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85800X/85800X.jpg</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1543610511?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11668,27903,27904,36039,36040,44342</link.rule.ids></links><search><creatorcontrib>Deng, Wen Li</creatorcontrib><creatorcontrib>Zheng, Zu Kang</creatorcontrib><creatorcontrib>Zhang, Ri Quan</creatorcontrib><title>Nonparametric Regression with Interval-Censored Data</title><title>Acta mathematica Sinica. English series</title><addtitle>Acta. Math. Sin.-English Ser</addtitle><addtitle>Acta Mathematica Sinica</addtitle><description>In many medical studies,the prevalence of interval censored data is increasing due to periodic monitoring of the progression status of a disease.In nonparametric regression model,when the response variable is subjected to interval-censoring,the regression function could not be estimated by traditional methods directly.With the censored data,we construct a new response variable which has the same conditional expectation as the original one.Based on the new variable,we get a nearest neighbor estimator of the regression function.It is established that the estimator has strong consistency and asymptotic normality.The relevant simulation reports are given.</description><subject>Asymptotic properties</subject><subject>Consistency</subject><subject>Data analysis</subject><subject>Estimators</subject><subject>Failure analysis</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Monitoring</subject><subject>Progressions</subject><subject>Random variables</subject><subject>Regression</subject><subject>Statistical analysis</subject><subject>Studies</subject><subject>Survival analysis</subject><subject>Theorems</subject><subject>传统方法</subject><subject>区间删失</subject><subject>区间数据</subject><subject>回归函数</subject><subject>定期监测</subject><subject>渐近正态性</subject><subject>近邻估计</subject><subject>非参数回归模型</subject><issn>1439-8516</issn><issn>1439-7617</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kE9LAzEQxYMoWKsfwNuiFy-rmWSTzR6l_isUBdFzSLOz7ZY2aZOt4rc3ZYuIBw_DDMzvvRkeIedAr4HS8iYCBShyuquSVXl5QAZQ8DRIKA_3sxIgj8lJjAtKhaioHJDi2bu1CWaFXWht9oqzgDG23mWfbTfPxq7D8GGW-Qhd9AHr7M505pQcNWYZ8Wzfh-T94f5t9JRPXh7Ho9tJbjlTXc65nQohFJqCCYGMGiVBlrKZUlSWMV7TQnFoRDVNe85QoKBNJeqCKlvXlg_JVe-7Dn6zxdjpVRstLpfGod9GncxASFCCJfTyD7rw2-DSdxpEwSVQAZAo6CkbfIwBG70O7cqELw1U73LUfY6a7irlqMukYb0mJtbNMPxy_kd0sT809262SbqfSzJloCSDin8Dy0V-dw</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Deng, Wen Li</creator><creator>Zheng, Zu Kang</creator><creator>Zhang, Ri Quan</creator><general>Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20140801</creationdate><title>Nonparametric Regression with Interval-Censored Data</title><author>Deng, Wen Li ; Zheng, Zu Kang ; Zhang, Ri Quan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-33cb5558ea4255e20a861676fb0e8c223d04831f59b25532e5e50f95d408cddc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Asymptotic properties</topic><topic>Consistency</topic><topic>Data analysis</topic><topic>Estimators</topic><topic>Failure analysis</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Monitoring</topic><topic>Progressions</topic><topic>Random variables</topic><topic>Regression</topic><topic>Statistical analysis</topic><topic>Studies</topic><topic>Survival analysis</topic><topic>Theorems</topic><topic>传统方法</topic><topic>区间删失</topic><topic>区间数据</topic><topic>回归函数</topic><topic>定期监测</topic><topic>渐近正态性</topic><topic>近邻估计</topic><topic>非参数回归模型</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Wen Li</creatorcontrib><creatorcontrib>Zheng, Zu Kang</creatorcontrib><creatorcontrib>Zhang, Ri Quan</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI-INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta mathematica Sinica. English series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Wen Li</au><au>Zheng, Zu Kang</au><au>Zhang, Ri Quan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonparametric Regression with Interval-Censored Data</atitle><jtitle>Acta mathematica Sinica. English series</jtitle><stitle>Acta. Math. Sin.-English Ser</stitle><addtitle>Acta Mathematica Sinica</addtitle><date>2014-08-01</date><risdate>2014</risdate><volume>30</volume><issue>8</issue><spage>1422</spage><epage>1434</epage><pages>1422-1434</pages><issn>1439-8516</issn><eissn>1439-7617</eissn><abstract>In many medical studies,the prevalence of interval censored data is increasing due to periodic monitoring of the progression status of a disease.In nonparametric regression model,when the response variable is subjected to interval-censoring,the regression function could not be estimated by traditional methods directly.With the censored data,we construct a new response variable which has the same conditional expectation as the original one.Based on the new variable,we get a nearest neighbor estimator of the regression function.It is established that the estimator has strong consistency and asymptotic normality.The relevant simulation reports are given.</abstract><cop>Heidelberg</cop><pub>Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</pub><doi>10.1007/s10114-014-0729-7</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1439-8516 |
ispartof | Acta mathematica Sinica. English series, 2014-08, Vol.30 (8), p.1422-1434 |
issn | 1439-8516 1439-7617 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671561852 |
source | ABI/INFORM Global; Springer Nature |
subjects | Asymptotic properties Consistency Data analysis Estimators Failure analysis Mathematical analysis Mathematical models Mathematics Mathematics and Statistics Monitoring Progressions Random variables Regression Statistical analysis Studies Survival analysis Theorems 传统方法 区间删失 区间数据 回归函数 定期监测 渐近正态性 近邻估计 非参数回归模型 |
title | Nonparametric Regression with Interval-Censored Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A02%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonparametric%20Regression%20with%20Interval-Censored%20Data&rft.jtitle=Acta%20mathematica%20Sinica.%20English%20series&rft.au=Deng,%20Wen%20Li&rft.date=2014-08-01&rft.volume=30&rft.issue=8&rft.spage=1422&rft.epage=1434&rft.pages=1422-1434&rft.issn=1439-8516&rft.eissn=1439-7617&rft_id=info:doi/10.1007/s10114-014-0729-7&rft_dat=%3Cproquest_cross%3E3366279811%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c328t-33cb5558ea4255e20a861676fb0e8c223d04831f59b25532e5e50f95d408cddc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1543610511&rft_id=info:pmid/&rft_cqvip_id=661686219&rfr_iscdi=true |