Loading…

Nonparametric Regression with Interval-Censored Data

In many medical studies,the prevalence of interval censored data is increasing due to periodic monitoring of the progression status of a disease.In nonparametric regression model,when the response variable is subjected to interval-censoring,the regression function could not be estimated by tradition...

Full description

Saved in:
Bibliographic Details
Published in:Acta mathematica Sinica. English series 2014-08, Vol.30 (8), p.1422-1434
Main Authors: Deng, Wen Li, Zheng, Zu Kang, Zhang, Ri Quan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c328t-33cb5558ea4255e20a861676fb0e8c223d04831f59b25532e5e50f95d408cddc3
container_end_page 1434
container_issue 8
container_start_page 1422
container_title Acta mathematica Sinica. English series
container_volume 30
creator Deng, Wen Li
Zheng, Zu Kang
Zhang, Ri Quan
description In many medical studies,the prevalence of interval censored data is increasing due to periodic monitoring of the progression status of a disease.In nonparametric regression model,when the response variable is subjected to interval-censoring,the regression function could not be estimated by traditional methods directly.With the censored data,we construct a new response variable which has the same conditional expectation as the original one.Based on the new variable,we get a nearest neighbor estimator of the regression function.It is established that the estimator has strong consistency and asymptotic normality.The relevant simulation reports are given.
doi_str_mv 10.1007/s10114-014-0729-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671561852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>661686219</cqvip_id><sourcerecordid>3366279811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-33cb5558ea4255e20a861676fb0e8c223d04831f59b25532e5e50f95d408cddc3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsfwNuiFy-rmWSTzR6l_isUBdFzSLOz7ZY2aZOt4rc3ZYuIBw_DDMzvvRkeIedAr4HS8iYCBShyuquSVXl5QAZQ8DRIKA_3sxIgj8lJjAtKhaioHJDi2bu1CWaFXWht9oqzgDG23mWfbTfPxq7D8GGW-Qhd9AHr7M505pQcNWYZ8Wzfh-T94f5t9JRPXh7Ho9tJbjlTXc65nQohFJqCCYGMGiVBlrKZUlSWMV7TQnFoRDVNe85QoKBNJeqCKlvXlg_JVe-7Dn6zxdjpVRstLpfGod9GncxASFCCJfTyD7rw2-DSdxpEwSVQAZAo6CkbfIwBG70O7cqELw1U73LUfY6a7irlqMukYb0mJtbNMPxy_kd0sT809262SbqfSzJloCSDin8Dy0V-dw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1543610511</pqid></control><display><type>article</type><title>Nonparametric Regression with Interval-Censored Data</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Deng, Wen Li ; Zheng, Zu Kang ; Zhang, Ri Quan</creator><creatorcontrib>Deng, Wen Li ; Zheng, Zu Kang ; Zhang, Ri Quan</creatorcontrib><description>In many medical studies,the prevalence of interval censored data is increasing due to periodic monitoring of the progression status of a disease.In nonparametric regression model,when the response variable is subjected to interval-censoring,the regression function could not be estimated by traditional methods directly.With the censored data,we construct a new response variable which has the same conditional expectation as the original one.Based on the new variable,we get a nearest neighbor estimator of the regression function.It is established that the estimator has strong consistency and asymptotic normality.The relevant simulation reports are given.</description><identifier>ISSN: 1439-8516</identifier><identifier>EISSN: 1439-7617</identifier><identifier>DOI: 10.1007/s10114-014-0729-7</identifier><language>eng</language><publisher>Heidelberg: Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</publisher><subject>Asymptotic properties ; Consistency ; Data analysis ; Estimators ; Failure analysis ; Mathematical analysis ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Monitoring ; Progressions ; Random variables ; Regression ; Statistical analysis ; Studies ; Survival analysis ; Theorems ; 传统方法 ; 区间删失 ; 区间数据 ; 回归函数 ; 定期监测 ; 渐近正态性 ; 近邻估计 ; 非参数回归模型</subject><ispartof>Acta mathematica Sinica. English series, 2014-08, Vol.30 (8), p.1422-1434</ispartof><rights>Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c328t-33cb5558ea4255e20a861676fb0e8c223d04831f59b25532e5e50f95d408cddc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85800X/85800X.jpg</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1543610511?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11668,27903,27904,36039,36040,44342</link.rule.ids></links><search><creatorcontrib>Deng, Wen Li</creatorcontrib><creatorcontrib>Zheng, Zu Kang</creatorcontrib><creatorcontrib>Zhang, Ri Quan</creatorcontrib><title>Nonparametric Regression with Interval-Censored Data</title><title>Acta mathematica Sinica. English series</title><addtitle>Acta. Math. Sin.-English Ser</addtitle><addtitle>Acta Mathematica Sinica</addtitle><description>In many medical studies,the prevalence of interval censored data is increasing due to periodic monitoring of the progression status of a disease.In nonparametric regression model,when the response variable is subjected to interval-censoring,the regression function could not be estimated by traditional methods directly.With the censored data,we construct a new response variable which has the same conditional expectation as the original one.Based on the new variable,we get a nearest neighbor estimator of the regression function.It is established that the estimator has strong consistency and asymptotic normality.The relevant simulation reports are given.</description><subject>Asymptotic properties</subject><subject>Consistency</subject><subject>Data analysis</subject><subject>Estimators</subject><subject>Failure analysis</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Monitoring</subject><subject>Progressions</subject><subject>Random variables</subject><subject>Regression</subject><subject>Statistical analysis</subject><subject>Studies</subject><subject>Survival analysis</subject><subject>Theorems</subject><subject>传统方法</subject><subject>区间删失</subject><subject>区间数据</subject><subject>回归函数</subject><subject>定期监测</subject><subject>渐近正态性</subject><subject>近邻估计</subject><subject>非参数回归模型</subject><issn>1439-8516</issn><issn>1439-7617</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kE9LAzEQxYMoWKsfwNuiFy-rmWSTzR6l_isUBdFzSLOz7ZY2aZOt4rc3ZYuIBw_DDMzvvRkeIedAr4HS8iYCBShyuquSVXl5QAZQ8DRIKA_3sxIgj8lJjAtKhaioHJDi2bu1CWaFXWht9oqzgDG23mWfbTfPxq7D8GGW-Qhd9AHr7M505pQcNWYZ8Wzfh-T94f5t9JRPXh7Ho9tJbjlTXc65nQohFJqCCYGMGiVBlrKZUlSWMV7TQnFoRDVNe85QoKBNJeqCKlvXlg_JVe-7Dn6zxdjpVRstLpfGod9GncxASFCCJfTyD7rw2-DSdxpEwSVQAZAo6CkbfIwBG70O7cqELw1U73LUfY6a7irlqMukYb0mJtbNMPxy_kd0sT809262SbqfSzJloCSDin8Dy0V-dw</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Deng, Wen Li</creator><creator>Zheng, Zu Kang</creator><creator>Zhang, Ri Quan</creator><general>Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20140801</creationdate><title>Nonparametric Regression with Interval-Censored Data</title><author>Deng, Wen Li ; Zheng, Zu Kang ; Zhang, Ri Quan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-33cb5558ea4255e20a861676fb0e8c223d04831f59b25532e5e50f95d408cddc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Asymptotic properties</topic><topic>Consistency</topic><topic>Data analysis</topic><topic>Estimators</topic><topic>Failure analysis</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Monitoring</topic><topic>Progressions</topic><topic>Random variables</topic><topic>Regression</topic><topic>Statistical analysis</topic><topic>Studies</topic><topic>Survival analysis</topic><topic>Theorems</topic><topic>传统方法</topic><topic>区间删失</topic><topic>区间数据</topic><topic>回归函数</topic><topic>定期监测</topic><topic>渐近正态性</topic><topic>近邻估计</topic><topic>非参数回归模型</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Wen Li</creatorcontrib><creatorcontrib>Zheng, Zu Kang</creatorcontrib><creatorcontrib>Zhang, Ri Quan</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI-INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta mathematica Sinica. English series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Wen Li</au><au>Zheng, Zu Kang</au><au>Zhang, Ri Quan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonparametric Regression with Interval-Censored Data</atitle><jtitle>Acta mathematica Sinica. English series</jtitle><stitle>Acta. Math. Sin.-English Ser</stitle><addtitle>Acta Mathematica Sinica</addtitle><date>2014-08-01</date><risdate>2014</risdate><volume>30</volume><issue>8</issue><spage>1422</spage><epage>1434</epage><pages>1422-1434</pages><issn>1439-8516</issn><eissn>1439-7617</eissn><abstract>In many medical studies,the prevalence of interval censored data is increasing due to periodic monitoring of the progression status of a disease.In nonparametric regression model,when the response variable is subjected to interval-censoring,the regression function could not be estimated by traditional methods directly.With the censored data,we construct a new response variable which has the same conditional expectation as the original one.Based on the new variable,we get a nearest neighbor estimator of the regression function.It is established that the estimator has strong consistency and asymptotic normality.The relevant simulation reports are given.</abstract><cop>Heidelberg</cop><pub>Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</pub><doi>10.1007/s10114-014-0729-7</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1439-8516
ispartof Acta mathematica Sinica. English series, 2014-08, Vol.30 (8), p.1422-1434
issn 1439-8516
1439-7617
language eng
recordid cdi_proquest_miscellaneous_1671561852
source ABI/INFORM Global; Springer Nature
subjects Asymptotic properties
Consistency
Data analysis
Estimators
Failure analysis
Mathematical analysis
Mathematical models
Mathematics
Mathematics and Statistics
Monitoring
Progressions
Random variables
Regression
Statistical analysis
Studies
Survival analysis
Theorems
传统方法
区间删失
区间数据
回归函数
定期监测
渐近正态性
近邻估计
非参数回归模型
title Nonparametric Regression with Interval-Censored Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A02%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonparametric%20Regression%20with%20Interval-Censored%20Data&rft.jtitle=Acta%20mathematica%20Sinica.%20English%20series&rft.au=Deng,%20Wen%20Li&rft.date=2014-08-01&rft.volume=30&rft.issue=8&rft.spage=1422&rft.epage=1434&rft.pages=1422-1434&rft.issn=1439-8516&rft.eissn=1439-7617&rft_id=info:doi/10.1007/s10114-014-0729-7&rft_dat=%3Cproquest_cross%3E3366279811%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c328t-33cb5558ea4255e20a861676fb0e8c223d04831f59b25532e5e50f95d408cddc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1543610511&rft_id=info:pmid/&rft_cqvip_id=661686219&rfr_iscdi=true