Loading…

Organosilane-functionalized graphene oxide for enhanced antifouling and mechanical properties of polyvinylidene fluoride ultrafiltration membranes

Functionalized graphene oxide (f-GO) was synthesized by a simple covalent functionalization with 3-aminopropyltriethoxysilane (APTS). The hybrid polyvinylidene fluoride (PVDF) ultrafiltration membranes were then prepared by adding different ratios of graphene oxide (GO) and f-GO via phase inversion...

Full description

Saved in:
Bibliographic Details
Published in:Journal of membrane science 2014-05, Vol.458, p.1-13
Main Authors: Xu, Zhiwei, Zhang, Jiguo, Shan, Mingjing, Li, Yinglin, Li, Baodong, Niu, Jiarong, Zhou, Baoming, Qian, Xiaoming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Functionalized graphene oxide (f-GO) was synthesized by a simple covalent functionalization with 3-aminopropyltriethoxysilane (APTS). The hybrid polyvinylidene fluoride (PVDF) ultrafiltration membranes were then prepared by adding different ratios of graphene oxide (GO) and f-GO via phase inversion induced by immersion precipitation technique. Zeta potential demonstrated that covalent functionalization of GO with APTS was favorable for their homogeneous dispersion in organic solvents. SEM images showed that very large channel appeared in top-layer by the addition of additives. Furthermore, the PVDF/f-GO membranes exhibited superior hydrophilicity, water flux, BSA flux and rejection rate than nascent PVDF membranes and PVDF/GO membranes. Filtration results indicated that the fouling resistance parameters were significantly declined due to higher hydrophilicity of hybrid membranes. An atomic force microscope (AFM) analysis with a BSA-immobilized tip revealed that the adhesion forces between membrane and foulants increased in the following order: PVDF/f-GO
ISSN:0376-7388
1873-3123
DOI:10.1016/j.memsci.2014.01.050