Loading…

Geographically versus dynamically defined boundary layer cloud regimes and their use to evaluate general circulation model cloud parameterizations

Regimes of tropical low‐level clouds are commonly identified according to large‐scale subsidence and lower tropospheric stability (LTS). This definition alone is insufficient for the distinction between regimes and limits the comparison of low‐level clouds from CloudSat radar observations and the EC...

Full description

Saved in:
Bibliographic Details
Published in:Geophysical research letters 2013-09, Vol.40 (18), p.4951-4956
Main Authors: Nam, Christine C.W., Quaas, Johannes
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4945-45d6b4fe1a795cf09af82aa3d648770f7ae2e5e7b23be420acf2551a26e0102d3
cites cdi_FETCH-LOGICAL-c4945-45d6b4fe1a795cf09af82aa3d648770f7ae2e5e7b23be420acf2551a26e0102d3
container_end_page 4956
container_issue 18
container_start_page 4951
container_title Geophysical research letters
container_volume 40
creator Nam, Christine C.W.
Quaas, Johannes
description Regimes of tropical low‐level clouds are commonly identified according to large‐scale subsidence and lower tropospheric stability (LTS). This definition alone is insufficient for the distinction between regimes and limits the comparison of low‐level clouds from CloudSat radar observations and the ECHAM5 GCM run with the COSP radar simulator. Comparisons of CloudSat radar cloud altitude‐reflectivity histograms for stratocumulus and shallow cumulus regimes, as defined above, show nearly identical reflectivity profiles, because the distinction between the two regimes is dependent upon atmospheric stability below 700 hPa and observations above 1.5 km. Regional subsets, near California and Hawaii, for example, have large differences in reflectivity profiles than the dynamically defined domain; indicating different reflectivity profiles exist under a given large‐scale environment. Regional subsets are better for the evaluation of low‐level clouds in CloudSat and ECHAM5 as there is less contamination between 2.5 km and 7.5 km from precipitating hydrometeors which obscured cloud reflectivities. Key Points Identification of low clouds by large‐scale dynamics insufficient for radarStratocumulus and shallow cumulus regimes have nearly identical reflectivitiesGeographical regions are better for evaluating low-level clouds with a radar
doi_str_mv 10.1002/grl.50945
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671568427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3545511021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4945-45d6b4fe1a795cf09af82aa3d648770f7ae2e5e7b23be420acf2551a26e0102d3</originalsourceid><addsrcrecordid>eNqFkV1rFDEUhgdRcK1e-A8CIujFtElm8jGXUupUWCuIIngTziZntqmZmTWZqU5_hr_Y2F17IahXgZPnfTiHtyieMnrMKOUn2xiOBW1qca9YsaauS02pul-saJ6Vmiv5sHiU0hWltKIVWxU_Why3EXaX3kIIC7nGmOZE3DJAfxg57PyAjmzGeXAQFxJgwUhsGGdHIm59j4nA4Mh0iT6SOSGZRoLXEGaYkGxxwAiBWB_tHGDy40D60WE4GHYQoccJo7-5_UyPiwcdhIRPDu9R8fH12YfT83L9rn1z-mpd2jrfV9bCyU3dIQPVCNvRBjrNASona60U7RQgR4Fqw6sN1pyC7bgQDLhEyih31VHxYu_dxfHrjGkyvU8WQ4ABxzkZJhUTUtdc_R8VvGkE1UJn9Nkf6NU4xyEfYljDqJJNNv6TknnZSufyMvVyT9k4phSxM7vo-1yBYdT8qtvkus1t3Zl9fjBCyr11EQbr012AK62FbGTmTvbcNx9w-bvQtO_Xv83lPuHThN_vEhC_GKkqJcyni9a0rBXi88Vbw6qf5ZfKBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642038194</pqid></control><display><type>article</type><title>Geographically versus dynamically defined boundary layer cloud regimes and their use to evaluate general circulation model cloud parameterizations</title><source>Wiley-Blackwell AGU Digital Archive</source><creator>Nam, Christine C.W. ; Quaas, Johannes</creator><creatorcontrib>Nam, Christine C.W. ; Quaas, Johannes</creatorcontrib><description>Regimes of tropical low‐level clouds are commonly identified according to large‐scale subsidence and lower tropospheric stability (LTS). This definition alone is insufficient for the distinction between regimes and limits the comparison of low‐level clouds from CloudSat radar observations and the ECHAM5 GCM run with the COSP radar simulator. Comparisons of CloudSat radar cloud altitude‐reflectivity histograms for stratocumulus and shallow cumulus regimes, as defined above, show nearly identical reflectivity profiles, because the distinction between the two regimes is dependent upon atmospheric stability below 700 hPa and observations above 1.5 km. Regional subsets, near California and Hawaii, for example, have large differences in reflectivity profiles than the dynamically defined domain; indicating different reflectivity profiles exist under a given large‐scale environment. Regional subsets are better for the evaluation of low‐level clouds in CloudSat and ECHAM5 as there is less contamination between 2.5 km and 7.5 km from precipitating hydrometeors which obscured cloud reflectivities. Key Points Identification of low clouds by large‐scale dynamics insufficient for radarStratocumulus and shallow cumulus regimes have nearly identical reflectivitiesGeographical regions are better for evaluating low-level clouds with a radar</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/grl.50945</identifier><identifier>CODEN: GPRLAJ</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Altitude ; Atmospheric stability ; boundary layer clouds ; Boundary layers ; Circulation ; Clouds ; CloudSat ; Computer simulation ; Contamination ; COSP ; Cumulus clouds ; Dynamic tests ; Earth sciences ; Earth, ocean, space ; ECHAM5 ; Evaluation ; Exact sciences and technology ; General circulation ; General circulation models ; Histograms ; Hydrometeors ; Identification ; Parametrization ; Profiles ; Radar ; radar simulator ; Reflectance ; Reflectivity ; Regional ; Regional analysis ; Simulation ; Simulators ; Stability ; Stratocumulus clouds ; Subsidence ; Tropical climate ; tropical low clouds</subject><ispartof>Geophysical research letters, 2013-09, Vol.40 (18), p.4951-4956</ispartof><rights>2013. American Geophysical Union. All Rights Reserved.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4945-45d6b4fe1a795cf09af82aa3d648770f7ae2e5e7b23be420acf2551a26e0102d3</citedby><cites>FETCH-LOGICAL-c4945-45d6b4fe1a795cf09af82aa3d648770f7ae2e5e7b23be420acf2551a26e0102d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fgrl.50945$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fgrl.50945$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11514,27924,27925,46468,46892</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27885696$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nam, Christine C.W.</creatorcontrib><creatorcontrib>Quaas, Johannes</creatorcontrib><title>Geographically versus dynamically defined boundary layer cloud regimes and their use to evaluate general circulation model cloud parameterizations</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>Regimes of tropical low‐level clouds are commonly identified according to large‐scale subsidence and lower tropospheric stability (LTS). This definition alone is insufficient for the distinction between regimes and limits the comparison of low‐level clouds from CloudSat radar observations and the ECHAM5 GCM run with the COSP radar simulator. Comparisons of CloudSat radar cloud altitude‐reflectivity histograms for stratocumulus and shallow cumulus regimes, as defined above, show nearly identical reflectivity profiles, because the distinction between the two regimes is dependent upon atmospheric stability below 700 hPa and observations above 1.5 km. Regional subsets, near California and Hawaii, for example, have large differences in reflectivity profiles than the dynamically defined domain; indicating different reflectivity profiles exist under a given large‐scale environment. Regional subsets are better for the evaluation of low‐level clouds in CloudSat and ECHAM5 as there is less contamination between 2.5 km and 7.5 km from precipitating hydrometeors which obscured cloud reflectivities. Key Points Identification of low clouds by large‐scale dynamics insufficient for radarStratocumulus and shallow cumulus regimes have nearly identical reflectivitiesGeographical regions are better for evaluating low-level clouds with a radar</description><subject>Altitude</subject><subject>Atmospheric stability</subject><subject>boundary layer clouds</subject><subject>Boundary layers</subject><subject>Circulation</subject><subject>Clouds</subject><subject>CloudSat</subject><subject>Computer simulation</subject><subject>Contamination</subject><subject>COSP</subject><subject>Cumulus clouds</subject><subject>Dynamic tests</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>ECHAM5</subject><subject>Evaluation</subject><subject>Exact sciences and technology</subject><subject>General circulation</subject><subject>General circulation models</subject><subject>Histograms</subject><subject>Hydrometeors</subject><subject>Identification</subject><subject>Parametrization</subject><subject>Profiles</subject><subject>Radar</subject><subject>radar simulator</subject><subject>Reflectance</subject><subject>Reflectivity</subject><subject>Regional</subject><subject>Regional analysis</subject><subject>Simulation</subject><subject>Simulators</subject><subject>Stability</subject><subject>Stratocumulus clouds</subject><subject>Subsidence</subject><subject>Tropical climate</subject><subject>tropical low clouds</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkV1rFDEUhgdRcK1e-A8CIujFtElm8jGXUupUWCuIIngTziZntqmZmTWZqU5_hr_Y2F17IahXgZPnfTiHtyieMnrMKOUn2xiOBW1qca9YsaauS02pul-saJ6Vmiv5sHiU0hWltKIVWxU_Why3EXaX3kIIC7nGmOZE3DJAfxg57PyAjmzGeXAQFxJgwUhsGGdHIm59j4nA4Mh0iT6SOSGZRoLXEGaYkGxxwAiBWB_tHGDy40D60WE4GHYQoccJo7-5_UyPiwcdhIRPDu9R8fH12YfT83L9rn1z-mpd2jrfV9bCyU3dIQPVCNvRBjrNASona60U7RQgR4Fqw6sN1pyC7bgQDLhEyih31VHxYu_dxfHrjGkyvU8WQ4ABxzkZJhUTUtdc_R8VvGkE1UJn9Nkf6NU4xyEfYljDqJJNNv6TknnZSufyMvVyT9k4phSxM7vo-1yBYdT8qtvkus1t3Zl9fjBCyr11EQbr012AK62FbGTmTvbcNx9w-bvQtO_Xv83lPuHThN_vEhC_GKkqJcyni9a0rBXi88Vbw6qf5ZfKBA</recordid><startdate>20130928</startdate><enddate>20130928</enddate><creator>Nam, Christine C.W.</creator><creator>Quaas, Johannes</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope></search><sort><creationdate>20130928</creationdate><title>Geographically versus dynamically defined boundary layer cloud regimes and their use to evaluate general circulation model cloud parameterizations</title><author>Nam, Christine C.W. ; Quaas, Johannes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4945-45d6b4fe1a795cf09af82aa3d648770f7ae2e5e7b23be420acf2551a26e0102d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Altitude</topic><topic>Atmospheric stability</topic><topic>boundary layer clouds</topic><topic>Boundary layers</topic><topic>Circulation</topic><topic>Clouds</topic><topic>CloudSat</topic><topic>Computer simulation</topic><topic>Contamination</topic><topic>COSP</topic><topic>Cumulus clouds</topic><topic>Dynamic tests</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>ECHAM5</topic><topic>Evaluation</topic><topic>Exact sciences and technology</topic><topic>General circulation</topic><topic>General circulation models</topic><topic>Histograms</topic><topic>Hydrometeors</topic><topic>Identification</topic><topic>Parametrization</topic><topic>Profiles</topic><topic>Radar</topic><topic>radar simulator</topic><topic>Reflectance</topic><topic>Reflectivity</topic><topic>Regional</topic><topic>Regional analysis</topic><topic>Simulation</topic><topic>Simulators</topic><topic>Stability</topic><topic>Stratocumulus clouds</topic><topic>Subsidence</topic><topic>Tropical climate</topic><topic>tropical low clouds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nam, Christine C.W.</creatorcontrib><creatorcontrib>Quaas, Johannes</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nam, Christine C.W.</au><au>Quaas, Johannes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geographically versus dynamically defined boundary layer cloud regimes and their use to evaluate general circulation model cloud parameterizations</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>2013-09-28</date><risdate>2013</risdate><volume>40</volume><issue>18</issue><spage>4951</spage><epage>4956</epage><pages>4951-4956</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><coden>GPRLAJ</coden><abstract>Regimes of tropical low‐level clouds are commonly identified according to large‐scale subsidence and lower tropospheric stability (LTS). This definition alone is insufficient for the distinction between regimes and limits the comparison of low‐level clouds from CloudSat radar observations and the ECHAM5 GCM run with the COSP radar simulator. Comparisons of CloudSat radar cloud altitude‐reflectivity histograms for stratocumulus and shallow cumulus regimes, as defined above, show nearly identical reflectivity profiles, because the distinction between the two regimes is dependent upon atmospheric stability below 700 hPa and observations above 1.5 km. Regional subsets, near California and Hawaii, for example, have large differences in reflectivity profiles than the dynamically defined domain; indicating different reflectivity profiles exist under a given large‐scale environment. Regional subsets are better for the evaluation of low‐level clouds in CloudSat and ECHAM5 as there is less contamination between 2.5 km and 7.5 km from precipitating hydrometeors which obscured cloud reflectivities. Key Points Identification of low clouds by large‐scale dynamics insufficient for radarStratocumulus and shallow cumulus regimes have nearly identical reflectivitiesGeographical regions are better for evaluating low-level clouds with a radar</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/grl.50945</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2013-09, Vol.40 (18), p.4951-4956
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_miscellaneous_1671568427
source Wiley-Blackwell AGU Digital Archive
subjects Altitude
Atmospheric stability
boundary layer clouds
Boundary layers
Circulation
Clouds
CloudSat
Computer simulation
Contamination
COSP
Cumulus clouds
Dynamic tests
Earth sciences
Earth, ocean, space
ECHAM5
Evaluation
Exact sciences and technology
General circulation
General circulation models
Histograms
Hydrometeors
Identification
Parametrization
Profiles
Radar
radar simulator
Reflectance
Reflectivity
Regional
Regional analysis
Simulation
Simulators
Stability
Stratocumulus clouds
Subsidence
Tropical climate
tropical low clouds
title Geographically versus dynamically defined boundary layer cloud regimes and their use to evaluate general circulation model cloud parameterizations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A01%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geographically%20versus%20dynamically%20defined%20boundary%20layer%20cloud%20regimes%20and%20their%20use%20to%20evaluate%20general%20circulation%20model%20cloud%20parameterizations&rft.jtitle=Geophysical%20research%20letters&rft.au=Nam,%20Christine%20C.W.&rft.date=2013-09-28&rft.volume=40&rft.issue=18&rft.spage=4951&rft.epage=4956&rft.pages=4951-4956&rft.issn=0094-8276&rft.eissn=1944-8007&rft.coden=GPRLAJ&rft_id=info:doi/10.1002/grl.50945&rft_dat=%3Cproquest_cross%3E3545511021%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4945-45d6b4fe1a795cf09af82aa3d648770f7ae2e5e7b23be420acf2551a26e0102d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1642038194&rft_id=info:pmid/&rfr_iscdi=true