Loading…

Time-series analysis of subsidence associated with rapid urbanization in Shanghai, China measured with SBAS InSAR method

River delta plains (deltas) are susceptible to subsidence producing undesirable environmental impact and affecting dense population. The City of Shanghai, located in the easternmost of Yangtze Delta in China, is one of the most developed regions in China that experiences the greatest land subsidence...

Full description

Saved in:
Bibliographic Details
Published in:Environmental earth sciences 2014-08, Vol.72 (3), p.677-691
Main Authors: Dong, Shaochun, Samsonov, Sergey, Yin, Hongwei, Ye, Shujun, Cao, Yanrong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:River delta plains (deltas) are susceptible to subsidence producing undesirable environmental impact and affecting dense population. The City of Shanghai, located in the easternmost of Yangtze Delta in China, is one of the most developed regions in China that experiences the greatest land subsidence. Excessive groundwater withdrawal is thought to be the primary cause of the land subsidence, but rapid urbanization and economic development, mass construction of skyscrapers, metro lines and highways are also contributing factors. In this paper, a spatial–temporal analysis of the land subsidence in Shanghai was performed with the help of the Small Baseline Subset Interferometric Synthetic Aperture Radar. Twenty l -band ALOS PALSAR images acquired during 2007–2010 were used to produce a linear deformation rate map and to derive time series of ground deformation. The results show homogeneous subsidence within the research area, but exceptionally rapid subsidence around skyscrapers, along metro lines, elevated roads and highways was also observed. Because groundwater exploitation and rapid urbanization responsible for much of the subsidence in the Shanghai region are expected to continue, future subsidence monitoring is warranted.
ISSN:1866-6280
1866-6299
DOI:10.1007/s12665-013-2990-y