Loading…
Electroluminescence and Photoluminescence of Conjugated Polymer Films Prepared by Plasma Enhanced Chemical Vapor Deposition of Naphthalene
Polymer light-emitting devices were fabricated utilizing plasma polymerized thin films as emissive layers. These conjugated polymer films were prepared by RF plasma enhanced chemical vapor deposition using naphthalene as monomer. The effect of different applied powers on the chemical structure and o...
Saved in:
Published in: | Plasma chemistry and plasma processing 2013-08, Vol.33 (4), p.817-826 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Polymer light-emitting devices were fabricated utilizing plasma polymerized thin films as emissive layers. These conjugated polymer films were prepared by RF plasma enhanced chemical vapor deposition using naphthalene as monomer. The effect of different applied powers on the chemical structure and optical properties of the conjugated polymers was investigated. Fourier transform infrared (FTIR) and Raman spectroscopies confirmed that a conjugated polymer film with a 3-D cross-linked network was developed. By increasing the power, products tended to form as highly cross-linked polymer films. The fabricated devices showed broadband Electroluminescence (EL) emission peaks with center at 535–550 nm. Photoluminescence (PL) spectra of plasma polymers showed different excimeric emissions, resulted from crosslinked architecture. As the plasma power increased, the optical properties showed two different domains; up to 200 W, EL, PL and UV–Vis spectra red-shifted and broadened significantly. At higher powers, a reverse behavior was observed. Also, the relation between the film structure and plasma species was investigated using optical emission spectroscopy. |
---|---|
ISSN: | 0272-4324 1572-8986 |
DOI: | 10.1007/s11090-013-9449-5 |