Loading…
Comparative Study of Extensional Viscoelasticity Properties of Liquid Films and Stability of Bulk Foams
The extensional viscoelasticity modulus and conductivity of liquid films and stability of bulk foams were investigated respectively. The effects of sinusoidal exciting frequency, polymer type, and polymer concentration on liquid film viscoelasticity modulus were systematically discussed. Higher film...
Saved in:
Published in: | Journal of dispersion science and technology 2013-10, Vol.34 (10), p.1382-1391 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The extensional viscoelasticity modulus and conductivity of liquid films and stability of bulk foams were investigated respectively. The effects of sinusoidal exciting frequency, polymer type, and polymer concentration on liquid film viscoelasticity modulus were systematically discussed. Higher film viscoelasticity modulus could be assigned for FS01/MPAM film systems than for FS01/HPAM ones. The film conductivity result showed that FS01/HPAM or FS01/MPAM liquid film systems could delay the liquid drainage speed under dynamic conditions compared with FS01 ones. Bulk foam test based on Waring Blender method indicated that FS01/HPAM foam was more stable than FS01/MPAM. Compared with static bulk foam test, the extensional viscoelasticity and conductivity method could reflect the dynamic behavior of liquid films. |
---|---|
ISSN: | 0193-2691 1532-2351 |
DOI: | 10.1080/01932691.2012.749182 |