Loading…
Effect of quenching temperature on structure and properties of titanium alloy: Physicomechanical properties
Regularities of the formation of physicomechanical properties of the VT16 alloy (Ti-3.33Al-5.18Mo-4.57V, wt %) quenched after furnace and rapid heating have been established using optical microscopy, X-ray diffraction (XRD), and dynamic mechanical analysis. It has been shown that changes in the modu...
Saved in:
Published in: | Physics of metals and metallography 2014-05, Vol.115 (5), p.517-522 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Regularities of the formation of physicomechanical properties of the VT16 alloy (Ti-3.33Al-5.18Mo-4.57V, wt %) quenched after furnace and rapid heating have been established using optical microscopy, X-ray diffraction (XRD), and dynamic mechanical analysis. It has been shown that changes in the modulus of elasticity of the VT16 alloy correlate with a decrease in the volume fraction of the α phase in the structure, except for a slight increase in the modulus of elasticity (related to the presence of the ω phase) in the case when quenching temperatures of 800–825°C were used. It has been found that the use of rapid heating to the quenching temperature leads to an increase in the temperature of the alloy transition into the single-phase β state, hampers grain growth during heating for quenching at temperatures close to the polymorphic-transition temperature, and creates conditions for more efficient strengthening in the course of subsequent aging. |
---|---|
ISSN: | 0031-918X 1555-6190 |
DOI: | 10.1134/S0031918X1405007X |