Loading…
Fuel-rich methane oxidation in a high-pressure flow reactor studied by optical-fiber laser-induced fluorescence, multi-species sampling profile measurements and detailed kinetic simulations
A versatile flow-reactor design is presented that permits multi-species profile measurements under industrially relevant temperatures and pressures. The reactor combines a capillary sampling technique with a novel fiber-optic Laser-Induced Fluorescence (LIF) method. The gas sampling provides quantit...
Saved in:
Published in: | Combustion and flame 2014-07, Vol.161 (7), p.1688-1700 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c542t-9f9b2012f6bd54690f6195305a445f0abdfb1895196cf20de68c15d08c48dc923 |
---|---|
cites | cdi_FETCH-LOGICAL-c542t-9f9b2012f6bd54690f6195305a445f0abdfb1895196cf20de68c15d08c48dc923 |
container_end_page | 1700 |
container_issue | 7 |
container_start_page | 1688 |
container_title | Combustion and flame |
container_volume | 161 |
creator | Schwarz, Heiner Geske, Michael Franklin Goldsmith, C. Schlögl, Robert Horn, Raimund |
description | A versatile flow-reactor design is presented that permits multi-species profile measurements under industrially relevant temperatures and pressures. The reactor combines a capillary sampling technique with a novel fiber-optic Laser-Induced Fluorescence (LIF) method. The gas sampling provides quantitative analysis of stable species by means of gas chromatography (i.e. CH4, O2,CO,CO2, H2O,H2, C2H6, C2H4), and the fiber-optic probe enables in situ detection of transient LIF-active species, demonstrated here for CH2O. A thorough analysis of the LIF correction terms for the temperature-dependent Boltzmann fraction and collisional quenching are presented. The laminar flow reactor is modeled by solving the two-dimensional Navier–Stokes equations in conjunction with a detailed kinetic mechanism. Experimental and simulated profiles are compared. The experimental profiles provide much needed data for the continued validation of the kinetic mechanism with respect to C1 and C2 chemistry; additionally, the results provide mechanistic insight into the reaction network of fuel-rich gas-phase methane oxidation, thus allowing optimization of the industrial process. |
doi_str_mv | 10.1016/j.combustflame.2014.01.007 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671576135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010218014000121</els_id><sourcerecordid>1671576135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-9f9b2012f6bd54690f6195305a445f0abdfb1895196cf20de68c15d08c48dc923</originalsourceid><addsrcrecordid>eNqNUUGO1DAQjBBIDAt_sJCQOOBgJ3Em4YZ2WUBaiQucLcdu7_TgxMHtAPs4_oaHWSGOnPrQ1VXVVVX1XIpaCtm_PtY2ztNG2QczQ90I2dVC1kLsH1Q7qVTPm7GRD6udEFLwRg7icfWE6CgKomvbXfXreoPAE9oDmyEfzAIs_kRnMsaF4cIMO-Dtga8JiLYEzIf4gyUwNsfEKG8OwbHpjsU1ozWBe5wgsWAIEsfFbbasfdhiubewWHjF5i1k5LSCRSBGZl4DLrdsTdFjgOLCnIRmWDIxszjmIJuycOwrLlBEGGGh-GOQnlaPvAkEz-7nRfXl-t3nyw_85tP7j5dvb7hVXZP56MepRNP4fnKq60fhezmqVijTdcoLMzk_yWFUcuytb4SDfrBSOTHYbnB2bNqL6uWZt7j8tgFlPWP5J4SSV9xIy34v1b6XrSrQN2eoTZEogddrwtmkOy2FPnWmj_rfzvSpMy2kLo2U4xf3OoZKmj6ZxSL9ZWgGNZY6ZcFdnXFQnv6OkDSVNEu8DhPYrF3E_5H7DTgnuaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671576135</pqid></control><display><type>article</type><title>Fuel-rich methane oxidation in a high-pressure flow reactor studied by optical-fiber laser-induced fluorescence, multi-species sampling profile measurements and detailed kinetic simulations</title><source>Elsevier</source><creator>Schwarz, Heiner ; Geske, Michael ; Franklin Goldsmith, C. ; Schlögl, Robert ; Horn, Raimund</creator><creatorcontrib>Schwarz, Heiner ; Geske, Michael ; Franklin Goldsmith, C. ; Schlögl, Robert ; Horn, Raimund</creatorcontrib><description>A versatile flow-reactor design is presented that permits multi-species profile measurements under industrially relevant temperatures and pressures. The reactor combines a capillary sampling technique with a novel fiber-optic Laser-Induced Fluorescence (LIF) method. The gas sampling provides quantitative analysis of stable species by means of gas chromatography (i.e. CH4, O2,CO,CO2, H2O,H2, C2H6, C2H4), and the fiber-optic probe enables in situ detection of transient LIF-active species, demonstrated here for CH2O. A thorough analysis of the LIF correction terms for the temperature-dependent Boltzmann fraction and collisional quenching are presented. The laminar flow reactor is modeled by solving the two-dimensional Navier–Stokes equations in conjunction with a detailed kinetic mechanism. Experimental and simulated profiles are compared. The experimental profiles provide much needed data for the continued validation of the kinetic mechanism with respect to C1 and C2 chemistry; additionally, the results provide mechanistic insight into the reaction network of fuel-rich gas-phase methane oxidation, thus allowing optimization of the industrial process.</description><identifier>ISSN: 0010-2180</identifier><identifier>EISSN: 1556-2921</identifier><identifier>DOI: 10.1016/j.combustflame.2014.01.007</identifier><identifier>CODEN: CBFMAO</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Applied sciences ; Combustion of gaseous fuels ; Combustion. Flame ; Computational fluid dynamics (CFD) ; Detailed kinetics ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fiber optics ; Fluorescence ; Laser-induced fluorescence (LIF) ; Methane ; Navier-Stokes equations ; Optical fibers ; Oxidative coupling of methane (OCM) ; Profile reactor ; Reaction kinetics ; Reactor modeling ; Reactors ; Sampling ; Theoretical studies. Data and constants. Metering</subject><ispartof>Combustion and flame, 2014-07, Vol.161 (7), p.1688-1700</ispartof><rights>2014 The Combustion Institute.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-9f9b2012f6bd54690f6195305a445f0abdfb1895196cf20de68c15d08c48dc923</citedby><cites>FETCH-LOGICAL-c542t-9f9b2012f6bd54690f6195305a445f0abdfb1895196cf20de68c15d08c48dc923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28599211$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Schwarz, Heiner</creatorcontrib><creatorcontrib>Geske, Michael</creatorcontrib><creatorcontrib>Franklin Goldsmith, C.</creatorcontrib><creatorcontrib>Schlögl, Robert</creatorcontrib><creatorcontrib>Horn, Raimund</creatorcontrib><title>Fuel-rich methane oxidation in a high-pressure flow reactor studied by optical-fiber laser-induced fluorescence, multi-species sampling profile measurements and detailed kinetic simulations</title><title>Combustion and flame</title><description>A versatile flow-reactor design is presented that permits multi-species profile measurements under industrially relevant temperatures and pressures. The reactor combines a capillary sampling technique with a novel fiber-optic Laser-Induced Fluorescence (LIF) method. The gas sampling provides quantitative analysis of stable species by means of gas chromatography (i.e. CH4, O2,CO,CO2, H2O,H2, C2H6, C2H4), and the fiber-optic probe enables in situ detection of transient LIF-active species, demonstrated here for CH2O. A thorough analysis of the LIF correction terms for the temperature-dependent Boltzmann fraction and collisional quenching are presented. The laminar flow reactor is modeled by solving the two-dimensional Navier–Stokes equations in conjunction with a detailed kinetic mechanism. Experimental and simulated profiles are compared. The experimental profiles provide much needed data for the continued validation of the kinetic mechanism with respect to C1 and C2 chemistry; additionally, the results provide mechanistic insight into the reaction network of fuel-rich gas-phase methane oxidation, thus allowing optimization of the industrial process.</description><subject>Applied sciences</subject><subject>Combustion of gaseous fuels</subject><subject>Combustion. Flame</subject><subject>Computational fluid dynamics (CFD)</subject><subject>Detailed kinetics</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fiber optics</subject><subject>Fluorescence</subject><subject>Laser-induced fluorescence (LIF)</subject><subject>Methane</subject><subject>Navier-Stokes equations</subject><subject>Optical fibers</subject><subject>Oxidative coupling of methane (OCM)</subject><subject>Profile reactor</subject><subject>Reaction kinetics</subject><subject>Reactor modeling</subject><subject>Reactors</subject><subject>Sampling</subject><subject>Theoretical studies. Data and constants. Metering</subject><issn>0010-2180</issn><issn>1556-2921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNUUGO1DAQjBBIDAt_sJCQOOBgJ3Em4YZ2WUBaiQucLcdu7_TgxMHtAPs4_oaHWSGOnPrQ1VXVVVX1XIpaCtm_PtY2ztNG2QczQ90I2dVC1kLsH1Q7qVTPm7GRD6udEFLwRg7icfWE6CgKomvbXfXreoPAE9oDmyEfzAIs_kRnMsaF4cIMO-Dtga8JiLYEzIf4gyUwNsfEKG8OwbHpjsU1ozWBe5wgsWAIEsfFbbasfdhiubewWHjF5i1k5LSCRSBGZl4DLrdsTdFjgOLCnIRmWDIxszjmIJuycOwrLlBEGGGh-GOQnlaPvAkEz-7nRfXl-t3nyw_85tP7j5dvb7hVXZP56MepRNP4fnKq60fhezmqVijTdcoLMzk_yWFUcuytb4SDfrBSOTHYbnB2bNqL6uWZt7j8tgFlPWP5J4SSV9xIy34v1b6XrSrQN2eoTZEogddrwtmkOy2FPnWmj_rfzvSpMy2kLo2U4xf3OoZKmj6ZxSL9ZWgGNZY6ZcFdnXFQnv6OkDSVNEu8DhPYrF3E_5H7DTgnuaA</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Schwarz, Heiner</creator><creator>Geske, Michael</creator><creator>Franklin Goldsmith, C.</creator><creator>Schlögl, Robert</creator><creator>Horn, Raimund</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140701</creationdate><title>Fuel-rich methane oxidation in a high-pressure flow reactor studied by optical-fiber laser-induced fluorescence, multi-species sampling profile measurements and detailed kinetic simulations</title><author>Schwarz, Heiner ; Geske, Michael ; Franklin Goldsmith, C. ; Schlögl, Robert ; Horn, Raimund</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-9f9b2012f6bd54690f6195305a445f0abdfb1895196cf20de68c15d08c48dc923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Combustion of gaseous fuels</topic><topic>Combustion. Flame</topic><topic>Computational fluid dynamics (CFD)</topic><topic>Detailed kinetics</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fiber optics</topic><topic>Fluorescence</topic><topic>Laser-induced fluorescence (LIF)</topic><topic>Methane</topic><topic>Navier-Stokes equations</topic><topic>Optical fibers</topic><topic>Oxidative coupling of methane (OCM)</topic><topic>Profile reactor</topic><topic>Reaction kinetics</topic><topic>Reactor modeling</topic><topic>Reactors</topic><topic>Sampling</topic><topic>Theoretical studies. Data and constants. Metering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schwarz, Heiner</creatorcontrib><creatorcontrib>Geske, Michael</creatorcontrib><creatorcontrib>Franklin Goldsmith, C.</creatorcontrib><creatorcontrib>Schlögl, Robert</creatorcontrib><creatorcontrib>Horn, Raimund</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Combustion and flame</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schwarz, Heiner</au><au>Geske, Michael</au><au>Franklin Goldsmith, C.</au><au>Schlögl, Robert</au><au>Horn, Raimund</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuel-rich methane oxidation in a high-pressure flow reactor studied by optical-fiber laser-induced fluorescence, multi-species sampling profile measurements and detailed kinetic simulations</atitle><jtitle>Combustion and flame</jtitle><date>2014-07-01</date><risdate>2014</risdate><volume>161</volume><issue>7</issue><spage>1688</spage><epage>1700</epage><pages>1688-1700</pages><issn>0010-2180</issn><eissn>1556-2921</eissn><coden>CBFMAO</coden><abstract>A versatile flow-reactor design is presented that permits multi-species profile measurements under industrially relevant temperatures and pressures. The reactor combines a capillary sampling technique with a novel fiber-optic Laser-Induced Fluorescence (LIF) method. The gas sampling provides quantitative analysis of stable species by means of gas chromatography (i.e. CH4, O2,CO,CO2, H2O,H2, C2H6, C2H4), and the fiber-optic probe enables in situ detection of transient LIF-active species, demonstrated here for CH2O. A thorough analysis of the LIF correction terms for the temperature-dependent Boltzmann fraction and collisional quenching are presented. The laminar flow reactor is modeled by solving the two-dimensional Navier–Stokes equations in conjunction with a detailed kinetic mechanism. Experimental and simulated profiles are compared. The experimental profiles provide much needed data for the continued validation of the kinetic mechanism with respect to C1 and C2 chemistry; additionally, the results provide mechanistic insight into the reaction network of fuel-rich gas-phase methane oxidation, thus allowing optimization of the industrial process.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.combustflame.2014.01.007</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-2180 |
ispartof | Combustion and flame, 2014-07, Vol.161 (7), p.1688-1700 |
issn | 0010-2180 1556-2921 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671576135 |
source | Elsevier |
subjects | Applied sciences Combustion of gaseous fuels Combustion. Flame Computational fluid dynamics (CFD) Detailed kinetics Energy Energy. Thermal use of fuels Exact sciences and technology Fiber optics Fluorescence Laser-induced fluorescence (LIF) Methane Navier-Stokes equations Optical fibers Oxidative coupling of methane (OCM) Profile reactor Reaction kinetics Reactor modeling Reactors Sampling Theoretical studies. Data and constants. Metering |
title | Fuel-rich methane oxidation in a high-pressure flow reactor studied by optical-fiber laser-induced fluorescence, multi-species sampling profile measurements and detailed kinetic simulations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A50%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuel-rich%20methane%20oxidation%20in%20a%20high-pressure%20flow%20reactor%20studied%20by%20optical-fiber%20laser-induced%20fluorescence,%20multi-species%20sampling%20profile%20measurements%20and%20detailed%20kinetic%20simulations&rft.jtitle=Combustion%20and%20flame&rft.au=Schwarz,%20Heiner&rft.date=2014-07-01&rft.volume=161&rft.issue=7&rft.spage=1688&rft.epage=1700&rft.pages=1688-1700&rft.issn=0010-2180&rft.eissn=1556-2921&rft.coden=CBFMAO&rft_id=info:doi/10.1016/j.combustflame.2014.01.007&rft_dat=%3Cproquest_cross%3E1671576135%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c542t-9f9b2012f6bd54690f6195305a445f0abdfb1895196cf20de68c15d08c48dc923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671576135&rft_id=info:pmid/&rfr_iscdi=true |