Loading…

Fuel-rich methane oxidation in a high-pressure flow reactor studied by optical-fiber laser-induced fluorescence, multi-species sampling profile measurements and detailed kinetic simulations

A versatile flow-reactor design is presented that permits multi-species profile measurements under industrially relevant temperatures and pressures. The reactor combines a capillary sampling technique with a novel fiber-optic Laser-Induced Fluorescence (LIF) method. The gas sampling provides quantit...

Full description

Saved in:
Bibliographic Details
Published in:Combustion and flame 2014-07, Vol.161 (7), p.1688-1700
Main Authors: Schwarz, Heiner, Geske, Michael, Franklin Goldsmith, C., Schlögl, Robert, Horn, Raimund
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c542t-9f9b2012f6bd54690f6195305a445f0abdfb1895196cf20de68c15d08c48dc923
cites cdi_FETCH-LOGICAL-c542t-9f9b2012f6bd54690f6195305a445f0abdfb1895196cf20de68c15d08c48dc923
container_end_page 1700
container_issue 7
container_start_page 1688
container_title Combustion and flame
container_volume 161
creator Schwarz, Heiner
Geske, Michael
Franklin Goldsmith, C.
Schlögl, Robert
Horn, Raimund
description A versatile flow-reactor design is presented that permits multi-species profile measurements under industrially relevant temperatures and pressures. The reactor combines a capillary sampling technique with a novel fiber-optic Laser-Induced Fluorescence (LIF) method. The gas sampling provides quantitative analysis of stable species by means of gas chromatography (i.e. CH4, O2,CO,CO2, H2O,H2, C2H6, C2H4), and the fiber-optic probe enables in situ detection of transient LIF-active species, demonstrated here for CH2O. A thorough analysis of the LIF correction terms for the temperature-dependent Boltzmann fraction and collisional quenching are presented. The laminar flow reactor is modeled by solving the two-dimensional Navier–Stokes equations in conjunction with a detailed kinetic mechanism. Experimental and simulated profiles are compared. The experimental profiles provide much needed data for the continued validation of the kinetic mechanism with respect to C1 and C2 chemistry; additionally, the results provide mechanistic insight into the reaction network of fuel-rich gas-phase methane oxidation, thus allowing optimization of the industrial process.
doi_str_mv 10.1016/j.combustflame.2014.01.007
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671576135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010218014000121</els_id><sourcerecordid>1671576135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-9f9b2012f6bd54690f6195305a445f0abdfb1895196cf20de68c15d08c48dc923</originalsourceid><addsrcrecordid>eNqNUUGO1DAQjBBIDAt_sJCQOOBgJ3Em4YZ2WUBaiQucLcdu7_TgxMHtAPs4_oaHWSGOnPrQ1VXVVVX1XIpaCtm_PtY2ztNG2QczQ90I2dVC1kLsH1Q7qVTPm7GRD6udEFLwRg7icfWE6CgKomvbXfXreoPAE9oDmyEfzAIs_kRnMsaF4cIMO-Dtga8JiLYEzIf4gyUwNsfEKG8OwbHpjsU1ozWBe5wgsWAIEsfFbbasfdhiubewWHjF5i1k5LSCRSBGZl4DLrdsTdFjgOLCnIRmWDIxszjmIJuycOwrLlBEGGGh-GOQnlaPvAkEz-7nRfXl-t3nyw_85tP7j5dvb7hVXZP56MepRNP4fnKq60fhezmqVijTdcoLMzk_yWFUcuytb4SDfrBSOTHYbnB2bNqL6uWZt7j8tgFlPWP5J4SSV9xIy34v1b6XrSrQN2eoTZEogddrwtmkOy2FPnWmj_rfzvSpMy2kLo2U4xf3OoZKmj6ZxSL9ZWgGNZY6ZcFdnXFQnv6OkDSVNEu8DhPYrF3E_5H7DTgnuaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671576135</pqid></control><display><type>article</type><title>Fuel-rich methane oxidation in a high-pressure flow reactor studied by optical-fiber laser-induced fluorescence, multi-species sampling profile measurements and detailed kinetic simulations</title><source>Elsevier</source><creator>Schwarz, Heiner ; Geske, Michael ; Franklin Goldsmith, C. ; Schlögl, Robert ; Horn, Raimund</creator><creatorcontrib>Schwarz, Heiner ; Geske, Michael ; Franklin Goldsmith, C. ; Schlögl, Robert ; Horn, Raimund</creatorcontrib><description>A versatile flow-reactor design is presented that permits multi-species profile measurements under industrially relevant temperatures and pressures. The reactor combines a capillary sampling technique with a novel fiber-optic Laser-Induced Fluorescence (LIF) method. The gas sampling provides quantitative analysis of stable species by means of gas chromatography (i.e. CH4, O2,CO,CO2, H2O,H2, C2H6, C2H4), and the fiber-optic probe enables in situ detection of transient LIF-active species, demonstrated here for CH2O. A thorough analysis of the LIF correction terms for the temperature-dependent Boltzmann fraction and collisional quenching are presented. The laminar flow reactor is modeled by solving the two-dimensional Navier–Stokes equations in conjunction with a detailed kinetic mechanism. Experimental and simulated profiles are compared. The experimental profiles provide much needed data for the continued validation of the kinetic mechanism with respect to C1 and C2 chemistry; additionally, the results provide mechanistic insight into the reaction network of fuel-rich gas-phase methane oxidation, thus allowing optimization of the industrial process.</description><identifier>ISSN: 0010-2180</identifier><identifier>EISSN: 1556-2921</identifier><identifier>DOI: 10.1016/j.combustflame.2014.01.007</identifier><identifier>CODEN: CBFMAO</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Applied sciences ; Combustion of gaseous fuels ; Combustion. Flame ; Computational fluid dynamics (CFD) ; Detailed kinetics ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fiber optics ; Fluorescence ; Laser-induced fluorescence (LIF) ; Methane ; Navier-Stokes equations ; Optical fibers ; Oxidative coupling of methane (OCM) ; Profile reactor ; Reaction kinetics ; Reactor modeling ; Reactors ; Sampling ; Theoretical studies. Data and constants. Metering</subject><ispartof>Combustion and flame, 2014-07, Vol.161 (7), p.1688-1700</ispartof><rights>2014 The Combustion Institute.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-9f9b2012f6bd54690f6195305a445f0abdfb1895196cf20de68c15d08c48dc923</citedby><cites>FETCH-LOGICAL-c542t-9f9b2012f6bd54690f6195305a445f0abdfb1895196cf20de68c15d08c48dc923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28599211$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Schwarz, Heiner</creatorcontrib><creatorcontrib>Geske, Michael</creatorcontrib><creatorcontrib>Franklin Goldsmith, C.</creatorcontrib><creatorcontrib>Schlögl, Robert</creatorcontrib><creatorcontrib>Horn, Raimund</creatorcontrib><title>Fuel-rich methane oxidation in a high-pressure flow reactor studied by optical-fiber laser-induced fluorescence, multi-species sampling profile measurements and detailed kinetic simulations</title><title>Combustion and flame</title><description>A versatile flow-reactor design is presented that permits multi-species profile measurements under industrially relevant temperatures and pressures. The reactor combines a capillary sampling technique with a novel fiber-optic Laser-Induced Fluorescence (LIF) method. The gas sampling provides quantitative analysis of stable species by means of gas chromatography (i.e. CH4, O2,CO,CO2, H2O,H2, C2H6, C2H4), and the fiber-optic probe enables in situ detection of transient LIF-active species, demonstrated here for CH2O. A thorough analysis of the LIF correction terms for the temperature-dependent Boltzmann fraction and collisional quenching are presented. The laminar flow reactor is modeled by solving the two-dimensional Navier–Stokes equations in conjunction with a detailed kinetic mechanism. Experimental and simulated profiles are compared. The experimental profiles provide much needed data for the continued validation of the kinetic mechanism with respect to C1 and C2 chemistry; additionally, the results provide mechanistic insight into the reaction network of fuel-rich gas-phase methane oxidation, thus allowing optimization of the industrial process.</description><subject>Applied sciences</subject><subject>Combustion of gaseous fuels</subject><subject>Combustion. Flame</subject><subject>Computational fluid dynamics (CFD)</subject><subject>Detailed kinetics</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fiber optics</subject><subject>Fluorescence</subject><subject>Laser-induced fluorescence (LIF)</subject><subject>Methane</subject><subject>Navier-Stokes equations</subject><subject>Optical fibers</subject><subject>Oxidative coupling of methane (OCM)</subject><subject>Profile reactor</subject><subject>Reaction kinetics</subject><subject>Reactor modeling</subject><subject>Reactors</subject><subject>Sampling</subject><subject>Theoretical studies. Data and constants. Metering</subject><issn>0010-2180</issn><issn>1556-2921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNUUGO1DAQjBBIDAt_sJCQOOBgJ3Em4YZ2WUBaiQucLcdu7_TgxMHtAPs4_oaHWSGOnPrQ1VXVVVX1XIpaCtm_PtY2ztNG2QczQ90I2dVC1kLsH1Q7qVTPm7GRD6udEFLwRg7icfWE6CgKomvbXfXreoPAE9oDmyEfzAIs_kRnMsaF4cIMO-Dtga8JiLYEzIf4gyUwNsfEKG8OwbHpjsU1ozWBe5wgsWAIEsfFbbasfdhiubewWHjF5i1k5LSCRSBGZl4DLrdsTdFjgOLCnIRmWDIxszjmIJuycOwrLlBEGGGh-GOQnlaPvAkEz-7nRfXl-t3nyw_85tP7j5dvb7hVXZP56MepRNP4fnKq60fhezmqVijTdcoLMzk_yWFUcuytb4SDfrBSOTHYbnB2bNqL6uWZt7j8tgFlPWP5J4SSV9xIy34v1b6XrSrQN2eoTZEogddrwtmkOy2FPnWmj_rfzvSpMy2kLo2U4xf3OoZKmj6ZxSL9ZWgGNZY6ZcFdnXFQnv6OkDSVNEu8DhPYrF3E_5H7DTgnuaA</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Schwarz, Heiner</creator><creator>Geske, Michael</creator><creator>Franklin Goldsmith, C.</creator><creator>Schlögl, Robert</creator><creator>Horn, Raimund</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140701</creationdate><title>Fuel-rich methane oxidation in a high-pressure flow reactor studied by optical-fiber laser-induced fluorescence, multi-species sampling profile measurements and detailed kinetic simulations</title><author>Schwarz, Heiner ; Geske, Michael ; Franklin Goldsmith, C. ; Schlögl, Robert ; Horn, Raimund</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-9f9b2012f6bd54690f6195305a445f0abdfb1895196cf20de68c15d08c48dc923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Combustion of gaseous fuels</topic><topic>Combustion. Flame</topic><topic>Computational fluid dynamics (CFD)</topic><topic>Detailed kinetics</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fiber optics</topic><topic>Fluorescence</topic><topic>Laser-induced fluorescence (LIF)</topic><topic>Methane</topic><topic>Navier-Stokes equations</topic><topic>Optical fibers</topic><topic>Oxidative coupling of methane (OCM)</topic><topic>Profile reactor</topic><topic>Reaction kinetics</topic><topic>Reactor modeling</topic><topic>Reactors</topic><topic>Sampling</topic><topic>Theoretical studies. Data and constants. Metering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schwarz, Heiner</creatorcontrib><creatorcontrib>Geske, Michael</creatorcontrib><creatorcontrib>Franklin Goldsmith, C.</creatorcontrib><creatorcontrib>Schlögl, Robert</creatorcontrib><creatorcontrib>Horn, Raimund</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Combustion and flame</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schwarz, Heiner</au><au>Geske, Michael</au><au>Franklin Goldsmith, C.</au><au>Schlögl, Robert</au><au>Horn, Raimund</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuel-rich methane oxidation in a high-pressure flow reactor studied by optical-fiber laser-induced fluorescence, multi-species sampling profile measurements and detailed kinetic simulations</atitle><jtitle>Combustion and flame</jtitle><date>2014-07-01</date><risdate>2014</risdate><volume>161</volume><issue>7</issue><spage>1688</spage><epage>1700</epage><pages>1688-1700</pages><issn>0010-2180</issn><eissn>1556-2921</eissn><coden>CBFMAO</coden><abstract>A versatile flow-reactor design is presented that permits multi-species profile measurements under industrially relevant temperatures and pressures. The reactor combines a capillary sampling technique with a novel fiber-optic Laser-Induced Fluorescence (LIF) method. The gas sampling provides quantitative analysis of stable species by means of gas chromatography (i.e. CH4, O2,CO,CO2, H2O,H2, C2H6, C2H4), and the fiber-optic probe enables in situ detection of transient LIF-active species, demonstrated here for CH2O. A thorough analysis of the LIF correction terms for the temperature-dependent Boltzmann fraction and collisional quenching are presented. The laminar flow reactor is modeled by solving the two-dimensional Navier–Stokes equations in conjunction with a detailed kinetic mechanism. Experimental and simulated profiles are compared. The experimental profiles provide much needed data for the continued validation of the kinetic mechanism with respect to C1 and C2 chemistry; additionally, the results provide mechanistic insight into the reaction network of fuel-rich gas-phase methane oxidation, thus allowing optimization of the industrial process.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.combustflame.2014.01.007</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-2180
ispartof Combustion and flame, 2014-07, Vol.161 (7), p.1688-1700
issn 0010-2180
1556-2921
language eng
recordid cdi_proquest_miscellaneous_1671576135
source Elsevier
subjects Applied sciences
Combustion of gaseous fuels
Combustion. Flame
Computational fluid dynamics (CFD)
Detailed kinetics
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Fiber optics
Fluorescence
Laser-induced fluorescence (LIF)
Methane
Navier-Stokes equations
Optical fibers
Oxidative coupling of methane (OCM)
Profile reactor
Reaction kinetics
Reactor modeling
Reactors
Sampling
Theoretical studies. Data and constants. Metering
title Fuel-rich methane oxidation in a high-pressure flow reactor studied by optical-fiber laser-induced fluorescence, multi-species sampling profile measurements and detailed kinetic simulations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A50%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuel-rich%20methane%20oxidation%20in%20a%20high-pressure%20flow%20reactor%20studied%20by%20optical-fiber%20laser-induced%20fluorescence,%20multi-species%20sampling%20profile%20measurements%20and%20detailed%20kinetic%20simulations&rft.jtitle=Combustion%20and%20flame&rft.au=Schwarz,%20Heiner&rft.date=2014-07-01&rft.volume=161&rft.issue=7&rft.spage=1688&rft.epage=1700&rft.pages=1688-1700&rft.issn=0010-2180&rft.eissn=1556-2921&rft.coden=CBFMAO&rft_id=info:doi/10.1016/j.combustflame.2014.01.007&rft_dat=%3Cproquest_cross%3E1671576135%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c542t-9f9b2012f6bd54690f6195305a445f0abdfb1895196cf20de68c15d08c48dc923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671576135&rft_id=info:pmid/&rfr_iscdi=true