Loading…

An accurate strength amplification factor for the design of SDOF systems with P-Δ effects

SUMMARY The response of structures subjected to seismic actions is always influenced by P–Δ effects. The importance of this effect is generally modest for structures experiencing an elastic response but often relevant for structures responding well within the inelastic range of behaviour. Seismic co...

Full description

Saved in:
Bibliographic Details
Published in:Earthquake engineering & structural dynamics 2014-04, Vol.43 (4), p.589-611
Main Authors: Amara, Fabio, Bosco, Melina, Marino, Edoardo M., Rossi, Pier Paolo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:SUMMARY The response of structures subjected to seismic actions is always influenced by P–Δ effects. The importance of this effect is generally modest for structures experiencing an elastic response but often relevant for structures responding well within the inelastic range of behaviour. Seismic codes indicate that P–Δ effects may be counterbalanced through an increase in the structural strength required by a first order analysis. This increase is calculated by means of a strength amplification factor. The expressions suggested in codes for this factor are simplistic and often criticized by researchers. In this paper, the effectiveness of some of the provisions reported in the literature or suggested in seismic codes is evaluated on single degree of freedom systems with different periods of vibration. As suggested by past studies, attention is focused on the influence of the interstorey drift sensitivity coefficient, significant duration of the ground motion, class of the site soil, displacement ductility and equivalent viscous damping ratio of the system. Finally, an accurate expression of the strength amplification factor is proposed. Copyright © 2013 John Wiley & Sons, Ltd.
ISSN:0098-8847
1096-9845
DOI:10.1002/eqe.2361