Loading…
Convergence of the reweighted sub(1) minimization algorithm for sub(2)- sub( )pminimization
The iteratively reweighted sub(1) minimization algorithm (IRL1) has been widely used for variable selection, signal reconstruction and image processing. In this paper, we show that any sequence generated by the IRL1 is bounded and any accumulation point is a stationary point of the sub(2)- sub( )pmi...
Saved in:
Published in: | Computational optimization and applications 2014-10, Vol.59 (1-2), p.47-61 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 61 |
container_issue | 1-2 |
container_start_page | 47 |
container_title | Computational optimization and applications |
container_volume | 59 |
creator | Chen, Xiaojun Zhou, Weijun |
description | The iteratively reweighted sub(1) minimization algorithm (IRL1) has been widely used for variable selection, signal reconstruction and image processing. In this paper, we show that any sequence generated by the IRL1 is bounded and any accumulation point is a stationary point of the sub(2)- sub( )pminimization problem with 0 |
doi_str_mv | 10.1007/s10589-013-9553-8 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671583635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671583635</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_16715836353</originalsourceid><addsrcrecordid>eNqVyrsKwjAUANAgCtbHB7hltEP0pjFtM4viB7g5SNXbNtImmqQKfr0gDq5OZzmEzDgsOEC29BxkrhhwwZSUguU9EnGZCZbkatUnEagkZSmAGJKR91cAUJlIInJYW_NAV6E5I7UlDTVSh0_UVR3wQn13mvOYttroVr-KoK2hRVNZp0Pd0tK6z0hi9pHGt985IYOyaDxOv47JfLvZr3fs5uy9Qx-OrfZnbJrCoO38kacZl7lIhRR_1DcYWEzU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671583635</pqid></control><display><type>article</type><title>Convergence of the reweighted sub(1) minimization algorithm for sub(2)- sub( )pminimization</title><source>ABI/INFORM Collection</source><source>Business Source Ultimate【Trial: -2024/12/31】【Remote access available】</source><source>Springer Link</source><creator>Chen, Xiaojun ; Zhou, Weijun</creator><creatorcontrib>Chen, Xiaojun ; Zhou, Weijun</creatorcontrib><description>The iteratively reweighted sub(1) minimization algorithm (IRL1) has been widely used for variable selection, signal reconstruction and image processing. In this paper, we show that any sequence generated by the IRL1 is bounded and any accumulation point is a stationary point of the sub(2)- sub( )pminimization problem with 0<p<1. Moreover, the stationary point is a global minimizer and the convergence rate is approximately linear under certain conditions. We derive posteriori error bounds which can be used to construct practical stopping rules for the algorithm.</description><identifier>ISSN: 0926-6003</identifier><identifier>EISSN: 1573-2894</identifier><identifier>DOI: 10.1007/s10589-013-9553-8</identifier><language>eng</language><subject>Algorithms ; Construction ; Convergence ; Image processing ; Mathematical models ; Minimization ; Optimization ; Signal reconstruction</subject><ispartof>Computational optimization and applications, 2014-10, Vol.59 (1-2), p.47-61</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,36061</link.rule.ids></links><search><creatorcontrib>Chen, Xiaojun</creatorcontrib><creatorcontrib>Zhou, Weijun</creatorcontrib><title>Convergence of the reweighted sub(1) minimization algorithm for sub(2)- sub( )pminimization</title><title>Computational optimization and applications</title><description>The iteratively reweighted sub(1) minimization algorithm (IRL1) has been widely used for variable selection, signal reconstruction and image processing. In this paper, we show that any sequence generated by the IRL1 is bounded and any accumulation point is a stationary point of the sub(2)- sub( )pminimization problem with 0<p<1. Moreover, the stationary point is a global minimizer and the convergence rate is approximately linear under certain conditions. We derive posteriori error bounds which can be used to construct practical stopping rules for the algorithm.</description><subject>Algorithms</subject><subject>Construction</subject><subject>Convergence</subject><subject>Image processing</subject><subject>Mathematical models</subject><subject>Minimization</subject><subject>Optimization</subject><subject>Signal reconstruction</subject><issn>0926-6003</issn><issn>1573-2894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqVyrsKwjAUANAgCtbHB7hltEP0pjFtM4viB7g5SNXbNtImmqQKfr0gDq5OZzmEzDgsOEC29BxkrhhwwZSUguU9EnGZCZbkatUnEagkZSmAGJKR91cAUJlIInJYW_NAV6E5I7UlDTVSh0_UVR3wQn13mvOYttroVr-KoK2hRVNZp0Pd0tK6z0hi9pHGt985IYOyaDxOv47JfLvZr3fs5uy9Qx-OrfZnbJrCoO38kacZl7lIhRR_1DcYWEzU</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Chen, Xiaojun</creator><creator>Zhou, Weijun</creator><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20141001</creationdate><title>Convergence of the reweighted sub(1) minimization algorithm for sub(2)- sub( )pminimization</title><author>Chen, Xiaojun ; Zhou, Weijun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_16715836353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Construction</topic><topic>Convergence</topic><topic>Image processing</topic><topic>Mathematical models</topic><topic>Minimization</topic><topic>Optimization</topic><topic>Signal reconstruction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xiaojun</creatorcontrib><creatorcontrib>Zhou, Weijun</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational optimization and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xiaojun</au><au>Zhou, Weijun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence of the reweighted sub(1) minimization algorithm for sub(2)- sub( )pminimization</atitle><jtitle>Computational optimization and applications</jtitle><date>2014-10-01</date><risdate>2014</risdate><volume>59</volume><issue>1-2</issue><spage>47</spage><epage>61</epage><pages>47-61</pages><issn>0926-6003</issn><eissn>1573-2894</eissn><abstract>The iteratively reweighted sub(1) minimization algorithm (IRL1) has been widely used for variable selection, signal reconstruction and image processing. In this paper, we show that any sequence generated by the IRL1 is bounded and any accumulation point is a stationary point of the sub(2)- sub( )pminimization problem with 0<p<1. Moreover, the stationary point is a global minimizer and the convergence rate is approximately linear under certain conditions. We derive posteriori error bounds which can be used to construct practical stopping rules for the algorithm.</abstract><doi>10.1007/s10589-013-9553-8</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0926-6003 |
ispartof | Computational optimization and applications, 2014-10, Vol.59 (1-2), p.47-61 |
issn | 0926-6003 1573-2894 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671583635 |
source | ABI/INFORM Collection; Business Source Ultimate【Trial: -2024/12/31】【Remote access available】; Springer Link |
subjects | Algorithms Construction Convergence Image processing Mathematical models Minimization Optimization Signal reconstruction |
title | Convergence of the reweighted sub(1) minimization algorithm for sub(2)- sub( )pminimization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A24%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20of%20the%20reweighted%20sub(1)%20minimization%20algorithm%20for%20sub(2)-%20sub(%20)pminimization&rft.jtitle=Computational%20optimization%20and%20applications&rft.au=Chen,%20Xiaojun&rft.date=2014-10-01&rft.volume=59&rft.issue=1-2&rft.spage=47&rft.epage=61&rft.pages=47-61&rft.issn=0926-6003&rft.eissn=1573-2894&rft_id=info:doi/10.1007/s10589-013-9553-8&rft_dat=%3Cproquest%3E1671583635%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_miscellaneous_16715836353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671583635&rft_id=info:pmid/&rfr_iscdi=true |