Loading…

Mechanism study of heat stabilization of polyacrylonitrile nanofibers against alkaline hydrolysis

Polyacrylonitrile (PAN) nanofibers were produced by electrospinning, then heated to crosslink and stabilize their morphology. The properties of resultant nanofibers were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT...

Full description

Saved in:
Bibliographic Details
Published in:Polymer degradation and stability 2014-07, Vol.105, p.80-85
Main Authors: Lee, Ka I, Li, Jianhua, Fei, Bin, Xin, John H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c433t-9595877b2d3297ef02eb3743e3df87e274d82567be27fcb6a975c0dbf926c7ab3
cites cdi_FETCH-LOGICAL-c433t-9595877b2d3297ef02eb3743e3df87e274d82567be27fcb6a975c0dbf926c7ab3
container_end_page 85
container_issue
container_start_page 80
container_title Polymer degradation and stability
container_volume 105
creator Lee, Ka I
Li, Jianhua
Fei, Bin
Xin, John H.
description Polyacrylonitrile (PAN) nanofibers were produced by electrospinning, then heated to crosslink and stabilize their morphology. The properties of resultant nanofibers were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and solvent extraction. The FTIR spectra of heated PAN revealed three simultaneous reactions within nanofibers: dehydrogenation, cyclization, and carbonylation. Their stabilization kinetics was different from the microfibers. The gel fraction results of extraction in DMF indicated the crosslinking degree resulted from the heat treatment. The SEM observation confirmed the integrity of nanofibers after alkaline hydrolysis. These finely modified PAN nanofibers have potential applications such as superabsorbent and artificial muscles.
doi_str_mv 10.1016/j.polymdegradstab.2014.03.015
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671587595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141391014001050</els_id><sourcerecordid>1671587595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-9595877b2d3297ef02eb3743e3df87e274d82567be27fcb6a975c0dbf926c7ab3</originalsourceid><addsrcrecordid>eNqNkM1u1DAUhS0EEkPhHbKpxCbBP0mcLFigCgpSKzawtm7s644Hjz3YHqTw9HU0FYuu8MbW9Tnn0z2EXDPaMcrGD4fuFP16NPiQwOQCS8cp6zsqOsqGF2THJilaLjh7SXb1g7ViZvQ1eZPzgdbTD2xH4B71HoLLxyaXs1mbaJs9Qmm2POfdXyguhm26sUCn1cfgSnIemwAhWrdgyg08gAu5NOB_gXcBm_1qUjVkl9-SVxZ8xndP9xX5-eXzj5uv7d332283n-5a3QtR2nmYh0nKhRvBZ4mWclyE7AUKYyeJXPZm4sMol_q0ehlhloOmZrEzH7WERVyR95fcU4q_z5iLOrqs0XsIGM9ZsVGySqiYKv14keoUc05o1Sm5I6RVMaq2atVBPatWbdUqKlSttvqvn1CQNXibIGiX_4XwaeCcSlp1txcd1r3_OEwqa4dBo3EJdVEmuv8kPgLjx5up</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671587595</pqid></control><display><type>article</type><title>Mechanism study of heat stabilization of polyacrylonitrile nanofibers against alkaline hydrolysis</title><source>ScienceDirect Journals</source><creator>Lee, Ka I ; Li, Jianhua ; Fei, Bin ; Xin, John H.</creator><creatorcontrib>Lee, Ka I ; Li, Jianhua ; Fei, Bin ; Xin, John H.</creatorcontrib><description>Polyacrylonitrile (PAN) nanofibers were produced by electrospinning, then heated to crosslink and stabilize their morphology. The properties of resultant nanofibers were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and solvent extraction. The FTIR spectra of heated PAN revealed three simultaneous reactions within nanofibers: dehydrogenation, cyclization, and carbonylation. Their stabilization kinetics was different from the microfibers. The gel fraction results of extraction in DMF indicated the crosslinking degree resulted from the heat treatment. The SEM observation confirmed the integrity of nanofibers after alkaline hydrolysis. These finely modified PAN nanofibers have potential applications such as superabsorbent and artificial muscles.</description><identifier>ISSN: 0141-3910</identifier><identifier>EISSN: 1873-2321</identifier><identifier>DOI: 10.1016/j.polymdegradstab.2014.03.015</identifier><identifier>CODEN: PDSTDW</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Alkaline hydrolysis ; Applied sciences ; Crosslinking ; Electrospinning ; Exact sciences and technology ; Fibers and threads ; Forms of application and semi-finished materials ; Fourier transforms ; FTIR ; Heat stabilization ; Infrared spectroscopy ; Nanofibers ; Polyacrylonitrile ; Polyacrylonitriles ; Polymer industry, paints, wood ; Scanning electron microscopy ; Solvent extraction ; Stabilization ; Technology of polymers</subject><ispartof>Polymer degradation and stability, 2014-07, Vol.105, p.80-85</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-9595877b2d3297ef02eb3743e3df87e274d82567be27fcb6a975c0dbf926c7ab3</citedby><cites>FETCH-LOGICAL-c433t-9595877b2d3297ef02eb3743e3df87e274d82567be27fcb6a975c0dbf926c7ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28522070$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Ka I</creatorcontrib><creatorcontrib>Li, Jianhua</creatorcontrib><creatorcontrib>Fei, Bin</creatorcontrib><creatorcontrib>Xin, John H.</creatorcontrib><title>Mechanism study of heat stabilization of polyacrylonitrile nanofibers against alkaline hydrolysis</title><title>Polymer degradation and stability</title><description>Polyacrylonitrile (PAN) nanofibers were produced by electrospinning, then heated to crosslink and stabilize their morphology. The properties of resultant nanofibers were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and solvent extraction. The FTIR spectra of heated PAN revealed three simultaneous reactions within nanofibers: dehydrogenation, cyclization, and carbonylation. Their stabilization kinetics was different from the microfibers. The gel fraction results of extraction in DMF indicated the crosslinking degree resulted from the heat treatment. The SEM observation confirmed the integrity of nanofibers after alkaline hydrolysis. These finely modified PAN nanofibers have potential applications such as superabsorbent and artificial muscles.</description><subject>Alkaline hydrolysis</subject><subject>Applied sciences</subject><subject>Crosslinking</subject><subject>Electrospinning</subject><subject>Exact sciences and technology</subject><subject>Fibers and threads</subject><subject>Forms of application and semi-finished materials</subject><subject>Fourier transforms</subject><subject>FTIR</subject><subject>Heat stabilization</subject><subject>Infrared spectroscopy</subject><subject>Nanofibers</subject><subject>Polyacrylonitrile</subject><subject>Polyacrylonitriles</subject><subject>Polymer industry, paints, wood</subject><subject>Scanning electron microscopy</subject><subject>Solvent extraction</subject><subject>Stabilization</subject><subject>Technology of polymers</subject><issn>0141-3910</issn><issn>1873-2321</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkM1u1DAUhS0EEkPhHbKpxCbBP0mcLFigCgpSKzawtm7s644Hjz3YHqTw9HU0FYuu8MbW9Tnn0z2EXDPaMcrGD4fuFP16NPiQwOQCS8cp6zsqOsqGF2THJilaLjh7SXb1g7ViZvQ1eZPzgdbTD2xH4B71HoLLxyaXs1mbaJs9Qmm2POfdXyguhm26sUCn1cfgSnIemwAhWrdgyg08gAu5NOB_gXcBm_1qUjVkl9-SVxZ8xndP9xX5-eXzj5uv7d332283n-5a3QtR2nmYh0nKhRvBZ4mWclyE7AUKYyeJXPZm4sMol_q0ehlhloOmZrEzH7WERVyR95fcU4q_z5iLOrqs0XsIGM9ZsVGySqiYKv14keoUc05o1Sm5I6RVMaq2atVBPatWbdUqKlSttvqvn1CQNXibIGiX_4XwaeCcSlp1txcd1r3_OEwqa4dBo3EJdVEmuv8kPgLjx5up</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Lee, Ka I</creator><creator>Li, Jianhua</creator><creator>Fei, Bin</creator><creator>Xin, John H.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140701</creationdate><title>Mechanism study of heat stabilization of polyacrylonitrile nanofibers against alkaline hydrolysis</title><author>Lee, Ka I ; Li, Jianhua ; Fei, Bin ; Xin, John H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-9595877b2d3297ef02eb3743e3df87e274d82567be27fcb6a975c0dbf926c7ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alkaline hydrolysis</topic><topic>Applied sciences</topic><topic>Crosslinking</topic><topic>Electrospinning</topic><topic>Exact sciences and technology</topic><topic>Fibers and threads</topic><topic>Forms of application and semi-finished materials</topic><topic>Fourier transforms</topic><topic>FTIR</topic><topic>Heat stabilization</topic><topic>Infrared spectroscopy</topic><topic>Nanofibers</topic><topic>Polyacrylonitrile</topic><topic>Polyacrylonitriles</topic><topic>Polymer industry, paints, wood</topic><topic>Scanning electron microscopy</topic><topic>Solvent extraction</topic><topic>Stabilization</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Ka I</creatorcontrib><creatorcontrib>Li, Jianhua</creatorcontrib><creatorcontrib>Fei, Bin</creatorcontrib><creatorcontrib>Xin, John H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Polymer degradation and stability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Ka I</au><au>Li, Jianhua</au><au>Fei, Bin</au><au>Xin, John H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism study of heat stabilization of polyacrylonitrile nanofibers against alkaline hydrolysis</atitle><jtitle>Polymer degradation and stability</jtitle><date>2014-07-01</date><risdate>2014</risdate><volume>105</volume><spage>80</spage><epage>85</epage><pages>80-85</pages><issn>0141-3910</issn><eissn>1873-2321</eissn><coden>PDSTDW</coden><abstract>Polyacrylonitrile (PAN) nanofibers were produced by electrospinning, then heated to crosslink and stabilize their morphology. The properties of resultant nanofibers were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and solvent extraction. The FTIR spectra of heated PAN revealed three simultaneous reactions within nanofibers: dehydrogenation, cyclization, and carbonylation. Their stabilization kinetics was different from the microfibers. The gel fraction results of extraction in DMF indicated the crosslinking degree resulted from the heat treatment. The SEM observation confirmed the integrity of nanofibers after alkaline hydrolysis. These finely modified PAN nanofibers have potential applications such as superabsorbent and artificial muscles.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymdegradstab.2014.03.015</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0141-3910
ispartof Polymer degradation and stability, 2014-07, Vol.105, p.80-85
issn 0141-3910
1873-2321
language eng
recordid cdi_proquest_miscellaneous_1671587595
source ScienceDirect Journals
subjects Alkaline hydrolysis
Applied sciences
Crosslinking
Electrospinning
Exact sciences and technology
Fibers and threads
Forms of application and semi-finished materials
Fourier transforms
FTIR
Heat stabilization
Infrared spectroscopy
Nanofibers
Polyacrylonitrile
Polyacrylonitriles
Polymer industry, paints, wood
Scanning electron microscopy
Solvent extraction
Stabilization
Technology of polymers
title Mechanism study of heat stabilization of polyacrylonitrile nanofibers against alkaline hydrolysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A02%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20study%20of%20heat%20stabilization%20of%20polyacrylonitrile%20nanofibers%20against%20alkaline%20hydrolysis&rft.jtitle=Polymer%20degradation%20and%20stability&rft.au=Lee,%20Ka%20I&rft.date=2014-07-01&rft.volume=105&rft.spage=80&rft.epage=85&rft.pages=80-85&rft.issn=0141-3910&rft.eissn=1873-2321&rft.coden=PDSTDW&rft_id=info:doi/10.1016/j.polymdegradstab.2014.03.015&rft_dat=%3Cproquest_cross%3E1671587595%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c433t-9595877b2d3297ef02eb3743e3df87e274d82567be27fcb6a975c0dbf926c7ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671587595&rft_id=info:pmid/&rfr_iscdi=true