Loading…
Mechanism study of heat stabilization of polyacrylonitrile nanofibers against alkaline hydrolysis
Polyacrylonitrile (PAN) nanofibers were produced by electrospinning, then heated to crosslink and stabilize their morphology. The properties of resultant nanofibers were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT...
Saved in:
Published in: | Polymer degradation and stability 2014-07, Vol.105, p.80-85 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c433t-9595877b2d3297ef02eb3743e3df87e274d82567be27fcb6a975c0dbf926c7ab3 |
---|---|
cites | cdi_FETCH-LOGICAL-c433t-9595877b2d3297ef02eb3743e3df87e274d82567be27fcb6a975c0dbf926c7ab3 |
container_end_page | 85 |
container_issue | |
container_start_page | 80 |
container_title | Polymer degradation and stability |
container_volume | 105 |
creator | Lee, Ka I Li, Jianhua Fei, Bin Xin, John H. |
description | Polyacrylonitrile (PAN) nanofibers were produced by electrospinning, then heated to crosslink and stabilize their morphology. The properties of resultant nanofibers were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and solvent extraction. The FTIR spectra of heated PAN revealed three simultaneous reactions within nanofibers: dehydrogenation, cyclization, and carbonylation. Their stabilization kinetics was different from the microfibers. The gel fraction results of extraction in DMF indicated the crosslinking degree resulted from the heat treatment. The SEM observation confirmed the integrity of nanofibers after alkaline hydrolysis. These finely modified PAN nanofibers have potential applications such as superabsorbent and artificial muscles. |
doi_str_mv | 10.1016/j.polymdegradstab.2014.03.015 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671587595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141391014001050</els_id><sourcerecordid>1671587595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-9595877b2d3297ef02eb3743e3df87e274d82567be27fcb6a975c0dbf926c7ab3</originalsourceid><addsrcrecordid>eNqNkM1u1DAUhS0EEkPhHbKpxCbBP0mcLFigCgpSKzawtm7s644Hjz3YHqTw9HU0FYuu8MbW9Tnn0z2EXDPaMcrGD4fuFP16NPiQwOQCS8cp6zsqOsqGF2THJilaLjh7SXb1g7ViZvQ1eZPzgdbTD2xH4B71HoLLxyaXs1mbaJs9Qmm2POfdXyguhm26sUCn1cfgSnIemwAhWrdgyg08gAu5NOB_gXcBm_1qUjVkl9-SVxZ8xndP9xX5-eXzj5uv7d332283n-5a3QtR2nmYh0nKhRvBZ4mWclyE7AUKYyeJXPZm4sMol_q0ehlhloOmZrEzH7WERVyR95fcU4q_z5iLOrqs0XsIGM9ZsVGySqiYKv14keoUc05o1Sm5I6RVMaq2atVBPatWbdUqKlSttvqvn1CQNXibIGiX_4XwaeCcSlp1txcd1r3_OEwqa4dBo3EJdVEmuv8kPgLjx5up</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671587595</pqid></control><display><type>article</type><title>Mechanism study of heat stabilization of polyacrylonitrile nanofibers against alkaline hydrolysis</title><source>ScienceDirect Journals</source><creator>Lee, Ka I ; Li, Jianhua ; Fei, Bin ; Xin, John H.</creator><creatorcontrib>Lee, Ka I ; Li, Jianhua ; Fei, Bin ; Xin, John H.</creatorcontrib><description>Polyacrylonitrile (PAN) nanofibers were produced by electrospinning, then heated to crosslink and stabilize their morphology. The properties of resultant nanofibers were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and solvent extraction. The FTIR spectra of heated PAN revealed three simultaneous reactions within nanofibers: dehydrogenation, cyclization, and carbonylation. Their stabilization kinetics was different from the microfibers. The gel fraction results of extraction in DMF indicated the crosslinking degree resulted from the heat treatment. The SEM observation confirmed the integrity of nanofibers after alkaline hydrolysis. These finely modified PAN nanofibers have potential applications such as superabsorbent and artificial muscles.</description><identifier>ISSN: 0141-3910</identifier><identifier>EISSN: 1873-2321</identifier><identifier>DOI: 10.1016/j.polymdegradstab.2014.03.015</identifier><identifier>CODEN: PDSTDW</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Alkaline hydrolysis ; Applied sciences ; Crosslinking ; Electrospinning ; Exact sciences and technology ; Fibers and threads ; Forms of application and semi-finished materials ; Fourier transforms ; FTIR ; Heat stabilization ; Infrared spectroscopy ; Nanofibers ; Polyacrylonitrile ; Polyacrylonitriles ; Polymer industry, paints, wood ; Scanning electron microscopy ; Solvent extraction ; Stabilization ; Technology of polymers</subject><ispartof>Polymer degradation and stability, 2014-07, Vol.105, p.80-85</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-9595877b2d3297ef02eb3743e3df87e274d82567be27fcb6a975c0dbf926c7ab3</citedby><cites>FETCH-LOGICAL-c433t-9595877b2d3297ef02eb3743e3df87e274d82567be27fcb6a975c0dbf926c7ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28522070$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Ka I</creatorcontrib><creatorcontrib>Li, Jianhua</creatorcontrib><creatorcontrib>Fei, Bin</creatorcontrib><creatorcontrib>Xin, John H.</creatorcontrib><title>Mechanism study of heat stabilization of polyacrylonitrile nanofibers against alkaline hydrolysis</title><title>Polymer degradation and stability</title><description>Polyacrylonitrile (PAN) nanofibers were produced by electrospinning, then heated to crosslink and stabilize their morphology. The properties of resultant nanofibers were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and solvent extraction. The FTIR spectra of heated PAN revealed three simultaneous reactions within nanofibers: dehydrogenation, cyclization, and carbonylation. Their stabilization kinetics was different from the microfibers. The gel fraction results of extraction in DMF indicated the crosslinking degree resulted from the heat treatment. The SEM observation confirmed the integrity of nanofibers after alkaline hydrolysis. These finely modified PAN nanofibers have potential applications such as superabsorbent and artificial muscles.</description><subject>Alkaline hydrolysis</subject><subject>Applied sciences</subject><subject>Crosslinking</subject><subject>Electrospinning</subject><subject>Exact sciences and technology</subject><subject>Fibers and threads</subject><subject>Forms of application and semi-finished materials</subject><subject>Fourier transforms</subject><subject>FTIR</subject><subject>Heat stabilization</subject><subject>Infrared spectroscopy</subject><subject>Nanofibers</subject><subject>Polyacrylonitrile</subject><subject>Polyacrylonitriles</subject><subject>Polymer industry, paints, wood</subject><subject>Scanning electron microscopy</subject><subject>Solvent extraction</subject><subject>Stabilization</subject><subject>Technology of polymers</subject><issn>0141-3910</issn><issn>1873-2321</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkM1u1DAUhS0EEkPhHbKpxCbBP0mcLFigCgpSKzawtm7s644Hjz3YHqTw9HU0FYuu8MbW9Tnn0z2EXDPaMcrGD4fuFP16NPiQwOQCS8cp6zsqOsqGF2THJilaLjh7SXb1g7ViZvQ1eZPzgdbTD2xH4B71HoLLxyaXs1mbaJs9Qmm2POfdXyguhm26sUCn1cfgSnIemwAhWrdgyg08gAu5NOB_gXcBm_1qUjVkl9-SVxZ8xndP9xX5-eXzj5uv7d332283n-5a3QtR2nmYh0nKhRvBZ4mWclyE7AUKYyeJXPZm4sMol_q0ehlhloOmZrEzH7WERVyR95fcU4q_z5iLOrqs0XsIGM9ZsVGySqiYKv14keoUc05o1Sm5I6RVMaq2atVBPatWbdUqKlSttvqvn1CQNXibIGiX_4XwaeCcSlp1txcd1r3_OEwqa4dBo3EJdVEmuv8kPgLjx5up</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Lee, Ka I</creator><creator>Li, Jianhua</creator><creator>Fei, Bin</creator><creator>Xin, John H.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140701</creationdate><title>Mechanism study of heat stabilization of polyacrylonitrile nanofibers against alkaline hydrolysis</title><author>Lee, Ka I ; Li, Jianhua ; Fei, Bin ; Xin, John H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-9595877b2d3297ef02eb3743e3df87e274d82567be27fcb6a975c0dbf926c7ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alkaline hydrolysis</topic><topic>Applied sciences</topic><topic>Crosslinking</topic><topic>Electrospinning</topic><topic>Exact sciences and technology</topic><topic>Fibers and threads</topic><topic>Forms of application and semi-finished materials</topic><topic>Fourier transforms</topic><topic>FTIR</topic><topic>Heat stabilization</topic><topic>Infrared spectroscopy</topic><topic>Nanofibers</topic><topic>Polyacrylonitrile</topic><topic>Polyacrylonitriles</topic><topic>Polymer industry, paints, wood</topic><topic>Scanning electron microscopy</topic><topic>Solvent extraction</topic><topic>Stabilization</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Ka I</creatorcontrib><creatorcontrib>Li, Jianhua</creatorcontrib><creatorcontrib>Fei, Bin</creatorcontrib><creatorcontrib>Xin, John H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Polymer degradation and stability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Ka I</au><au>Li, Jianhua</au><au>Fei, Bin</au><au>Xin, John H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism study of heat stabilization of polyacrylonitrile nanofibers against alkaline hydrolysis</atitle><jtitle>Polymer degradation and stability</jtitle><date>2014-07-01</date><risdate>2014</risdate><volume>105</volume><spage>80</spage><epage>85</epage><pages>80-85</pages><issn>0141-3910</issn><eissn>1873-2321</eissn><coden>PDSTDW</coden><abstract>Polyacrylonitrile (PAN) nanofibers were produced by electrospinning, then heated to crosslink and stabilize their morphology. The properties of resultant nanofibers were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and solvent extraction. The FTIR spectra of heated PAN revealed three simultaneous reactions within nanofibers: dehydrogenation, cyclization, and carbonylation. Their stabilization kinetics was different from the microfibers. The gel fraction results of extraction in DMF indicated the crosslinking degree resulted from the heat treatment. The SEM observation confirmed the integrity of nanofibers after alkaline hydrolysis. These finely modified PAN nanofibers have potential applications such as superabsorbent and artificial muscles.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymdegradstab.2014.03.015</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-3910 |
ispartof | Polymer degradation and stability, 2014-07, Vol.105, p.80-85 |
issn | 0141-3910 1873-2321 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671587595 |
source | ScienceDirect Journals |
subjects | Alkaline hydrolysis Applied sciences Crosslinking Electrospinning Exact sciences and technology Fibers and threads Forms of application and semi-finished materials Fourier transforms FTIR Heat stabilization Infrared spectroscopy Nanofibers Polyacrylonitrile Polyacrylonitriles Polymer industry, paints, wood Scanning electron microscopy Solvent extraction Stabilization Technology of polymers |
title | Mechanism study of heat stabilization of polyacrylonitrile nanofibers against alkaline hydrolysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A02%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20study%20of%20heat%20stabilization%20of%20polyacrylonitrile%20nanofibers%20against%20alkaline%20hydrolysis&rft.jtitle=Polymer%20degradation%20and%20stability&rft.au=Lee,%20Ka%20I&rft.date=2014-07-01&rft.volume=105&rft.spage=80&rft.epage=85&rft.pages=80-85&rft.issn=0141-3910&rft.eissn=1873-2321&rft.coden=PDSTDW&rft_id=info:doi/10.1016/j.polymdegradstab.2014.03.015&rft_dat=%3Cproquest_cross%3E1671587595%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c433t-9595877b2d3297ef02eb3743e3df87e274d82567be27fcb6a975c0dbf926c7ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671587595&rft_id=info:pmid/&rfr_iscdi=true |