Loading…

Thermodynamic analyses of a biomass integrated fired combined cycle

A biomass integrated fired combined cycle (BIFCC) is proposed and examined with energy and exergy analyses. A focal point is the biomass gasification process, for which four different biomasses are examined. The fuel in the bottoming cycle is a biomass while the topping cycle fuel is natural gas. Th...

Full description

Saved in:
Bibliographic Details
Published in:Applied thermal engineering 2013-09, Vol.59 (1-2), p.60-68
Main Authors: Soltani, S., Mahmoudi, S.M.S., Yari, M., Rosen, M.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c426t-544e2a5c897095c00d93fd78d8e3358d4b66950b2131932c2885118eb7af8fde3
cites cdi_FETCH-LOGICAL-c426t-544e2a5c897095c00d93fd78d8e3358d4b66950b2131932c2885118eb7af8fde3
container_end_page 68
container_issue 1-2
container_start_page 60
container_title Applied thermal engineering
container_volume 59
creator Soltani, S.
Mahmoudi, S.M.S.
Yari, M.
Rosen, M.A.
description A biomass integrated fired combined cycle (BIFCC) is proposed and examined with energy and exergy analyses. A focal point is the biomass gasification process, for which four different biomasses are examined. The fuel in the bottoming cycle is a biomass while the topping cycle fuel is natural gas. The analyses consider a range of compressor pressure ratios (6–24), gas turbine inlet temperatures (1300–1500 K), heat recovery steam generator (HRSG) inlet temperatures (840–940 K) and molar natural gas to biomass ratios (0.05–1.50). The energy efficiency is compared when the cycle uses natural gas, or natural gas and biomass (of various kinds). The efficiency is seen to be maximized at an optimum pressure ratio, which depends on the gas turbine and HRSG inlet temperatures. Increasing the gas turbine and decreasing the HRSG inlet temperatures leads to in an increase in energy and exergy efficiencies for the cycle. The performance of an 80-MW capacity plant is investigated for three cases, with optimum pressure ratios and various operating parameters. The most advantageous performance among the three cases, for which the energy and exergy efficiencies are 53.16 and 48.39% respectively, is achieved when the turbine inlet temperature is 1500 K, the HRSG inlet temperature is 840 K and the compressor pressure ratio is 14. •A gas turbine combined cycle with gasified biomass firing is analyzed.•Thermodynamic analysis considers first and second law analyses.•Thermal efficiency peaks at an optimum cycle pressure ratio (about 10–14).•Three sets of operating parameters are considered in a detailed case study.•One of three cases is more efficient from energy and exergy viewpoints.
doi_str_mv 10.1016/j.applthermaleng.2013.05.018
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671589433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431113003669</els_id><sourcerecordid>1671589433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-544e2a5c897095c00d93fd78d8e3358d4b66950b2131932c2885118eb7af8fde3</originalsourceid><addsrcrecordid>eNqNkD9PwzAQxT2ARCl8hwwgsST4YjtxJBZUUUCqxFJmy7EvxVX-YadI-fYkaoXEBMvdDe-9u_sRcgM0AQrZ_T7RfV8PH-gbXWO7S1IKLKEioSDPyAKYKGLOAC7IZQh7SiGVOV-Q1XZ2dHZsdeNMpFtdjwFD1FWRjkrXNTqEyLUD7rwe0EaV81M1XVO6dh5GU-MVOa90HfD61Jfkff20Xb3Em7fn19XjJjY8zYZYcI6pFkYWOS2EodQWrLK5tBIZE9LyMssKQcsUGBQsNamUAkBimetKVhbZktwdc3vffR4wDKpxwWBd6xa7Q1CQ5SBkwRn7W8r59D5kPJukD0ep8V0IHivVe9doPyqgakar9uo3WjWjVVSoCe1kvz1t0sHouvK6NS78ZKR5JhidblqS9VGHE6Evh14F47A1aCeiZlC2c_9b-A1jC5kX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1448741646</pqid></control><display><type>article</type><title>Thermodynamic analyses of a biomass integrated fired combined cycle</title><source>ScienceDirect Freedom Collection</source><creator>Soltani, S. ; Mahmoudi, S.M.S. ; Yari, M. ; Rosen, M.A.</creator><creatorcontrib>Soltani, S. ; Mahmoudi, S.M.S. ; Yari, M. ; Rosen, M.A.</creatorcontrib><description>A biomass integrated fired combined cycle (BIFCC) is proposed and examined with energy and exergy analyses. A focal point is the biomass gasification process, for which four different biomasses are examined. The fuel in the bottoming cycle is a biomass while the topping cycle fuel is natural gas. The analyses consider a range of compressor pressure ratios (6–24), gas turbine inlet temperatures (1300–1500 K), heat recovery steam generator (HRSG) inlet temperatures (840–940 K) and molar natural gas to biomass ratios (0.05–1.50). The energy efficiency is compared when the cycle uses natural gas, or natural gas and biomass (of various kinds). The efficiency is seen to be maximized at an optimum pressure ratio, which depends on the gas turbine and HRSG inlet temperatures. Increasing the gas turbine and decreasing the HRSG inlet temperatures leads to in an increase in energy and exergy efficiencies for the cycle. The performance of an 80-MW capacity plant is investigated for three cases, with optimum pressure ratios and various operating parameters. The most advantageous performance among the three cases, for which the energy and exergy efficiencies are 53.16 and 48.39% respectively, is achieved when the turbine inlet temperature is 1500 K, the HRSG inlet temperature is 840 K and the compressor pressure ratio is 14. •A gas turbine combined cycle with gasified biomass firing is analyzed.•Thermodynamic analysis considers first and second law analyses.•Thermal efficiency peaks at an optimum cycle pressure ratio (about 10–14).•Three sets of operating parameters are considered in a detailed case study.•One of three cases is more efficient from energy and exergy viewpoints.</description><identifier>ISSN: 1359-4311</identifier><identifier>DOI: 10.1016/j.applthermaleng.2013.05.018</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Biomass ; Biomass gasification ; Combined cycle ; Combined cycle engines ; Energy ; Energy management ; Energy. Thermal use of fuels ; Exact sciences and technology ; Exergy ; Gas turbines ; Heat transfer ; Inlet temperature ; Natural energy ; Natural gas ; Post combustion ; Power generation ; Pressure ratio ; Theoretical studies. Data and constants. Metering</subject><ispartof>Applied thermal engineering, 2013-09, Vol.59 (1-2), p.60-68</ispartof><rights>2013 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-544e2a5c897095c00d93fd78d8e3358d4b66950b2131932c2885118eb7af8fde3</citedby><cites>FETCH-LOGICAL-c426t-544e2a5c897095c00d93fd78d8e3358d4b66950b2131932c2885118eb7af8fde3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27653094$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Soltani, S.</creatorcontrib><creatorcontrib>Mahmoudi, S.M.S.</creatorcontrib><creatorcontrib>Yari, M.</creatorcontrib><creatorcontrib>Rosen, M.A.</creatorcontrib><title>Thermodynamic analyses of a biomass integrated fired combined cycle</title><title>Applied thermal engineering</title><description>A biomass integrated fired combined cycle (BIFCC) is proposed and examined with energy and exergy analyses. A focal point is the biomass gasification process, for which four different biomasses are examined. The fuel in the bottoming cycle is a biomass while the topping cycle fuel is natural gas. The analyses consider a range of compressor pressure ratios (6–24), gas turbine inlet temperatures (1300–1500 K), heat recovery steam generator (HRSG) inlet temperatures (840–940 K) and molar natural gas to biomass ratios (0.05–1.50). The energy efficiency is compared when the cycle uses natural gas, or natural gas and biomass (of various kinds). The efficiency is seen to be maximized at an optimum pressure ratio, which depends on the gas turbine and HRSG inlet temperatures. Increasing the gas turbine and decreasing the HRSG inlet temperatures leads to in an increase in energy and exergy efficiencies for the cycle. The performance of an 80-MW capacity plant is investigated for three cases, with optimum pressure ratios and various operating parameters. The most advantageous performance among the three cases, for which the energy and exergy efficiencies are 53.16 and 48.39% respectively, is achieved when the turbine inlet temperature is 1500 K, the HRSG inlet temperature is 840 K and the compressor pressure ratio is 14. •A gas turbine combined cycle with gasified biomass firing is analyzed.•Thermodynamic analysis considers first and second law analyses.•Thermal efficiency peaks at an optimum cycle pressure ratio (about 10–14).•Three sets of operating parameters are considered in a detailed case study.•One of three cases is more efficient from energy and exergy viewpoints.</description><subject>Applied sciences</subject><subject>Biomass</subject><subject>Biomass gasification</subject><subject>Combined cycle</subject><subject>Combined cycle engines</subject><subject>Energy</subject><subject>Energy management</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Exergy</subject><subject>Gas turbines</subject><subject>Heat transfer</subject><subject>Inlet temperature</subject><subject>Natural energy</subject><subject>Natural gas</subject><subject>Post combustion</subject><subject>Power generation</subject><subject>Pressure ratio</subject><subject>Theoretical studies. Data and constants. Metering</subject><issn>1359-4311</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkD9PwzAQxT2ARCl8hwwgsST4YjtxJBZUUUCqxFJmy7EvxVX-YadI-fYkaoXEBMvdDe-9u_sRcgM0AQrZ_T7RfV8PH-gbXWO7S1IKLKEioSDPyAKYKGLOAC7IZQh7SiGVOV-Q1XZ2dHZsdeNMpFtdjwFD1FWRjkrXNTqEyLUD7rwe0EaV81M1XVO6dh5GU-MVOa90HfD61Jfkff20Xb3Em7fn19XjJjY8zYZYcI6pFkYWOS2EodQWrLK5tBIZE9LyMssKQcsUGBQsNamUAkBimetKVhbZktwdc3vffR4wDKpxwWBd6xa7Q1CQ5SBkwRn7W8r59D5kPJukD0ep8V0IHivVe9doPyqgakar9uo3WjWjVVSoCe1kvz1t0sHouvK6NS78ZKR5JhidblqS9VGHE6Evh14F47A1aCeiZlC2c_9b-A1jC5kX</recordid><startdate>20130925</startdate><enddate>20130925</enddate><creator>Soltani, S.</creator><creator>Mahmoudi, S.M.S.</creator><creator>Yari, M.</creator><creator>Rosen, M.A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20130925</creationdate><title>Thermodynamic analyses of a biomass integrated fired combined cycle</title><author>Soltani, S. ; Mahmoudi, S.M.S. ; Yari, M. ; Rosen, M.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-544e2a5c897095c00d93fd78d8e3358d4b66950b2131932c2885118eb7af8fde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Biomass</topic><topic>Biomass gasification</topic><topic>Combined cycle</topic><topic>Combined cycle engines</topic><topic>Energy</topic><topic>Energy management</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Exergy</topic><topic>Gas turbines</topic><topic>Heat transfer</topic><topic>Inlet temperature</topic><topic>Natural energy</topic><topic>Natural gas</topic><topic>Post combustion</topic><topic>Power generation</topic><topic>Pressure ratio</topic><topic>Theoretical studies. Data and constants. Metering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soltani, S.</creatorcontrib><creatorcontrib>Mahmoudi, S.M.S.</creatorcontrib><creatorcontrib>Yari, M.</creatorcontrib><creatorcontrib>Rosen, M.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soltani, S.</au><au>Mahmoudi, S.M.S.</au><au>Yari, M.</au><au>Rosen, M.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic analyses of a biomass integrated fired combined cycle</atitle><jtitle>Applied thermal engineering</jtitle><date>2013-09-25</date><risdate>2013</risdate><volume>59</volume><issue>1-2</issue><spage>60</spage><epage>68</epage><pages>60-68</pages><issn>1359-4311</issn><abstract>A biomass integrated fired combined cycle (BIFCC) is proposed and examined with energy and exergy analyses. A focal point is the biomass gasification process, for which four different biomasses are examined. The fuel in the bottoming cycle is a biomass while the topping cycle fuel is natural gas. The analyses consider a range of compressor pressure ratios (6–24), gas turbine inlet temperatures (1300–1500 K), heat recovery steam generator (HRSG) inlet temperatures (840–940 K) and molar natural gas to biomass ratios (0.05–1.50). The energy efficiency is compared when the cycle uses natural gas, or natural gas and biomass (of various kinds). The efficiency is seen to be maximized at an optimum pressure ratio, which depends on the gas turbine and HRSG inlet temperatures. Increasing the gas turbine and decreasing the HRSG inlet temperatures leads to in an increase in energy and exergy efficiencies for the cycle. The performance of an 80-MW capacity plant is investigated for three cases, with optimum pressure ratios and various operating parameters. The most advantageous performance among the three cases, for which the energy and exergy efficiencies are 53.16 and 48.39% respectively, is achieved when the turbine inlet temperature is 1500 K, the HRSG inlet temperature is 840 K and the compressor pressure ratio is 14. •A gas turbine combined cycle with gasified biomass firing is analyzed.•Thermodynamic analysis considers first and second law analyses.•Thermal efficiency peaks at an optimum cycle pressure ratio (about 10–14).•Three sets of operating parameters are considered in a detailed case study.•One of three cases is more efficient from energy and exergy viewpoints.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2013.05.018</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-4311
ispartof Applied thermal engineering, 2013-09, Vol.59 (1-2), p.60-68
issn 1359-4311
language eng
recordid cdi_proquest_miscellaneous_1671589433
source ScienceDirect Freedom Collection
subjects Applied sciences
Biomass
Biomass gasification
Combined cycle
Combined cycle engines
Energy
Energy management
Energy. Thermal use of fuels
Exact sciences and technology
Exergy
Gas turbines
Heat transfer
Inlet temperature
Natural energy
Natural gas
Post combustion
Power generation
Pressure ratio
Theoretical studies. Data and constants. Metering
title Thermodynamic analyses of a biomass integrated fired combined cycle
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T17%3A05%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic%20analyses%20of%20a%20biomass%20integrated%20fired%20combined%20cycle&rft.jtitle=Applied%20thermal%20engineering&rft.au=Soltani,%20S.&rft.date=2013-09-25&rft.volume=59&rft.issue=1-2&rft.spage=60&rft.epage=68&rft.pages=60-68&rft.issn=1359-4311&rft_id=info:doi/10.1016/j.applthermaleng.2013.05.018&rft_dat=%3Cproquest_cross%3E1671589433%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c426t-544e2a5c897095c00d93fd78d8e3358d4b66950b2131932c2885118eb7af8fde3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1448741646&rft_id=info:pmid/&rfr_iscdi=true