Loading…

Predicting feedstock and percent composition for blends of biodiesel with conventional diesel using chemometrics and gas chromatography–mass spectrometry

► Biodiesels from three different feedstocks were blended with conventional diesels. ► The blends were separated by GC–qMS with a polar column as well as a nonpolar column. ► Feature selection, scaling, PCA, HCA, and KNN were used to determine the feedstock. ► Blend percent composition was determine...

Full description

Saved in:
Bibliographic Details
Published in:Talanta (Oxford) 2012-05, Vol.94, p.320-327
Main Authors: Schale, Stephen P., Le, Trang M., Pierce, Karisa M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c461t-8a0c24a566a3f0f28cd136b29f5201d42507357cf671474fc93f349c30c551b73
cites cdi_FETCH-LOGICAL-c461t-8a0c24a566a3f0f28cd136b29f5201d42507357cf671474fc93f349c30c551b73
container_end_page 327
container_issue
container_start_page 320
container_title Talanta (Oxford)
container_volume 94
creator Schale, Stephen P.
Le, Trang M.
Pierce, Karisa M.
description ► Biodiesels from three different feedstocks were blended with conventional diesels. ► The blends were separated by GC–qMS with a polar column as well as a nonpolar column. ► Feature selection, scaling, PCA, HCA, and KNN were used to determine the feedstock. ► Blend percent composition was determined using a PLS model built for the feedstock. The two main goals of the analytical method described herein were to (1) use principal component analysis (PCA), hierarchical clustering (HCA) and K-nearest neighbors (KNN) to determine the feedstock source of blends of biodiesel and conventional diesel (feedstocks were two sources of soy, two strains of jatropha, and a local feedstock) and (2) use a partial least squares (PLS) model built specifically for each feedstock to determine the percent composition of the blend. The chemometric models were built using training sets composed of total ion current chromatograms from gas chromatography–quadrupole mass spectrometry (GC–qMS) using a polar column. The models were used to semi-automatically determine feedstock and blend percent composition of independent test set samples. The PLS predictions for jatropha blends had RMSEC=0.6, RMSECV=1.2, and RMSEP=1.4. The PLS predictions for soy blends had RMSEC=0.5, RMSECV=0.8, and RMSEP=1.2. The average relative error in predicted test set sample compositions was 5% for jatropha blends and 4% for soy blends.
doi_str_mv 10.1016/j.talanta.2012.03.050
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671596677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0039914012002780</els_id><sourcerecordid>1671596677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-8a0c24a566a3f0f28cd136b29f5201d42507357cf671474fc93f349c30c551b73</originalsourceid><addsrcrecordid>eNqNkcuO0zAUhiMEYsrAI4C8QWKTcnxNskJoxE0aCRawtlzHbl2SOPi4g7rjHVjydjwJ7jTAElaW7O8_Pvq_qnpMYU2Bquf7dTaDmbJZM6BsDXwNEu5UK9o2vOay4XerFQDv6o4KuKgeIO4BgHHg96sLxhS0QspV9eNDcn2wOUxb4p3rMUf7mZipJ7NL1k2Z2DjOEUMOcSI-JrIZ3NQjiZ5sQuyDQzeQryHvCjjdlEDhzECWhwOeBtudG-PocgoWb2dvDZbLFEeT4zaZeXf8-e37aBAJzs7mdAsfH1b3vBnQPVrOy-rT61cfr97W1-_fvLt6eV1boWiuWwOWCSOVMtyDZ63tKVcb1nlZqukFk9CUQqxXDRWN8LbjnovOcrBS0k3DL6tn57lzil8ODrMeA1o3lHpdPKCmJSg7pZr_QIG3TAihVEHlGbUpIibn9ZzCaNKxQPqkUO_1olCfFGrguigsuSfLF4fN6Po_qd_OCvB0AQxaM_hkJhvwLyc7ASBY4V6cOVe6uwkuabTBTbb4TqVk3cfwj1V-AfXdwKo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038244466</pqid></control><display><type>article</type><title>Predicting feedstock and percent composition for blends of biodiesel with conventional diesel using chemometrics and gas chromatography–mass spectrometry</title><source>ScienceDirect Journals</source><creator>Schale, Stephen P. ; Le, Trang M. ; Pierce, Karisa M.</creator><creatorcontrib>Schale, Stephen P. ; Le, Trang M. ; Pierce, Karisa M.</creatorcontrib><description>► Biodiesels from three different feedstocks were blended with conventional diesels. ► The blends were separated by GC–qMS with a polar column as well as a nonpolar column. ► Feature selection, scaling, PCA, HCA, and KNN were used to determine the feedstock. ► Blend percent composition was determined using a PLS model built for the feedstock. The two main goals of the analytical method described herein were to (1) use principal component analysis (PCA), hierarchical clustering (HCA) and K-nearest neighbors (KNN) to determine the feedstock source of blends of biodiesel and conventional diesel (feedstocks were two sources of soy, two strains of jatropha, and a local feedstock) and (2) use a partial least squares (PLS) model built specifically for each feedstock to determine the percent composition of the blend. The chemometric models were built using training sets composed of total ion current chromatograms from gas chromatography–quadrupole mass spectrometry (GC–qMS) using a polar column. The models were used to semi-automatically determine feedstock and blend percent composition of independent test set samples. The PLS predictions for jatropha blends had RMSEC=0.6, RMSECV=1.2, and RMSEP=1.4. The PLS predictions for soy blends had RMSEC=0.5, RMSECV=0.8, and RMSEP=1.2. The average relative error in predicted test set sample compositions was 5% for jatropha blends and 4% for soy blends.</description><identifier>ISSN: 0039-9140</identifier><identifier>EISSN: 1873-3573</identifier><identifier>DOI: 10.1016/j.talanta.2012.03.050</identifier><identifier>PMID: 22608455</identifier><identifier>CODEN: TLNTA2</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Analytical chemistry ; Biodiesel ; Biofuels ; Blend ; Blends ; Chemistry ; Chemometrics ; Chromatographic methods and physical methods associated with chromatography ; Chromatography ; Diesel ; Diesel fuels ; Exact sciences and technology ; Feedstock ; Gas chromatographic methods ; Gas Chromatography-Mass Spectrometry ; Gasoline ; Glycine max - chemistry ; Jatropha - chemistry ; Least-Squares Analysis ; Mathematical models ; Polymer blends ; Principal Component Analysis ; Spectrometric and optical methods</subject><ispartof>Talanta (Oxford), 2012-05, Vol.94, p.320-327</ispartof><rights>2012 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2012 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-8a0c24a566a3f0f28cd136b29f5201d42507357cf671474fc93f349c30c551b73</citedby><cites>FETCH-LOGICAL-c461t-8a0c24a566a3f0f28cd136b29f5201d42507357cf671474fc93f349c30c551b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25940042$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22608455$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schale, Stephen P.</creatorcontrib><creatorcontrib>Le, Trang M.</creatorcontrib><creatorcontrib>Pierce, Karisa M.</creatorcontrib><title>Predicting feedstock and percent composition for blends of biodiesel with conventional diesel using chemometrics and gas chromatography–mass spectrometry</title><title>Talanta (Oxford)</title><addtitle>Talanta</addtitle><description>► Biodiesels from three different feedstocks were blended with conventional diesels. ► The blends were separated by GC–qMS with a polar column as well as a nonpolar column. ► Feature selection, scaling, PCA, HCA, and KNN were used to determine the feedstock. ► Blend percent composition was determined using a PLS model built for the feedstock. The two main goals of the analytical method described herein were to (1) use principal component analysis (PCA), hierarchical clustering (HCA) and K-nearest neighbors (KNN) to determine the feedstock source of blends of biodiesel and conventional diesel (feedstocks were two sources of soy, two strains of jatropha, and a local feedstock) and (2) use a partial least squares (PLS) model built specifically for each feedstock to determine the percent composition of the blend. The chemometric models were built using training sets composed of total ion current chromatograms from gas chromatography–quadrupole mass spectrometry (GC–qMS) using a polar column. The models were used to semi-automatically determine feedstock and blend percent composition of independent test set samples. The PLS predictions for jatropha blends had RMSEC=0.6, RMSECV=1.2, and RMSEP=1.4. The PLS predictions for soy blends had RMSEC=0.5, RMSECV=0.8, and RMSEP=1.2. The average relative error in predicted test set sample compositions was 5% for jatropha blends and 4% for soy blends.</description><subject>Analytical chemistry</subject><subject>Biodiesel</subject><subject>Biofuels</subject><subject>Blend</subject><subject>Blends</subject><subject>Chemistry</subject><subject>Chemometrics</subject><subject>Chromatographic methods and physical methods associated with chromatography</subject><subject>Chromatography</subject><subject>Diesel</subject><subject>Diesel fuels</subject><subject>Exact sciences and technology</subject><subject>Feedstock</subject><subject>Gas chromatographic methods</subject><subject>Gas Chromatography-Mass Spectrometry</subject><subject>Gasoline</subject><subject>Glycine max - chemistry</subject><subject>Jatropha - chemistry</subject><subject>Least-Squares Analysis</subject><subject>Mathematical models</subject><subject>Polymer blends</subject><subject>Principal Component Analysis</subject><subject>Spectrometric and optical methods</subject><issn>0039-9140</issn><issn>1873-3573</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkcuO0zAUhiMEYsrAI4C8QWKTcnxNskJoxE0aCRawtlzHbl2SOPi4g7rjHVjydjwJ7jTAElaW7O8_Pvq_qnpMYU2Bquf7dTaDmbJZM6BsDXwNEu5UK9o2vOay4XerFQDv6o4KuKgeIO4BgHHg96sLxhS0QspV9eNDcn2wOUxb4p3rMUf7mZipJ7NL1k2Z2DjOEUMOcSI-JrIZ3NQjiZ5sQuyDQzeQryHvCjjdlEDhzECWhwOeBtudG-PocgoWb2dvDZbLFEeT4zaZeXf8-e37aBAJzs7mdAsfH1b3vBnQPVrOy-rT61cfr97W1-_fvLt6eV1boWiuWwOWCSOVMtyDZ63tKVcb1nlZqukFk9CUQqxXDRWN8LbjnovOcrBS0k3DL6tn57lzil8ODrMeA1o3lHpdPKCmJSg7pZr_QIG3TAihVEHlGbUpIibn9ZzCaNKxQPqkUO_1olCfFGrguigsuSfLF4fN6Po_qd_OCvB0AQxaM_hkJhvwLyc7ASBY4V6cOVe6uwkuabTBTbb4TqVk3cfwj1V-AfXdwKo</recordid><startdate>20120530</startdate><enddate>20120530</enddate><creator>Schale, Stephen P.</creator><creator>Le, Trang M.</creator><creator>Pierce, Karisa M.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20120530</creationdate><title>Predicting feedstock and percent composition for blends of biodiesel with conventional diesel using chemometrics and gas chromatography–mass spectrometry</title><author>Schale, Stephen P. ; Le, Trang M. ; Pierce, Karisa M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-8a0c24a566a3f0f28cd136b29f5201d42507357cf671474fc93f349c30c551b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Analytical chemistry</topic><topic>Biodiesel</topic><topic>Biofuels</topic><topic>Blend</topic><topic>Blends</topic><topic>Chemistry</topic><topic>Chemometrics</topic><topic>Chromatographic methods and physical methods associated with chromatography</topic><topic>Chromatography</topic><topic>Diesel</topic><topic>Diesel fuels</topic><topic>Exact sciences and technology</topic><topic>Feedstock</topic><topic>Gas chromatographic methods</topic><topic>Gas Chromatography-Mass Spectrometry</topic><topic>Gasoline</topic><topic>Glycine max - chemistry</topic><topic>Jatropha - chemistry</topic><topic>Least-Squares Analysis</topic><topic>Mathematical models</topic><topic>Polymer blends</topic><topic>Principal Component Analysis</topic><topic>Spectrometric and optical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schale, Stephen P.</creatorcontrib><creatorcontrib>Le, Trang M.</creatorcontrib><creatorcontrib>Pierce, Karisa M.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Talanta (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schale, Stephen P.</au><au>Le, Trang M.</au><au>Pierce, Karisa M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting feedstock and percent composition for blends of biodiesel with conventional diesel using chemometrics and gas chromatography–mass spectrometry</atitle><jtitle>Talanta (Oxford)</jtitle><addtitle>Talanta</addtitle><date>2012-05-30</date><risdate>2012</risdate><volume>94</volume><spage>320</spage><epage>327</epage><pages>320-327</pages><issn>0039-9140</issn><eissn>1873-3573</eissn><coden>TLNTA2</coden><abstract>► Biodiesels from three different feedstocks were blended with conventional diesels. ► The blends were separated by GC–qMS with a polar column as well as a nonpolar column. ► Feature selection, scaling, PCA, HCA, and KNN were used to determine the feedstock. ► Blend percent composition was determined using a PLS model built for the feedstock. The two main goals of the analytical method described herein were to (1) use principal component analysis (PCA), hierarchical clustering (HCA) and K-nearest neighbors (KNN) to determine the feedstock source of blends of biodiesel and conventional diesel (feedstocks were two sources of soy, two strains of jatropha, and a local feedstock) and (2) use a partial least squares (PLS) model built specifically for each feedstock to determine the percent composition of the blend. The chemometric models were built using training sets composed of total ion current chromatograms from gas chromatography–quadrupole mass spectrometry (GC–qMS) using a polar column. The models were used to semi-automatically determine feedstock and blend percent composition of independent test set samples. The PLS predictions for jatropha blends had RMSEC=0.6, RMSECV=1.2, and RMSEP=1.4. The PLS predictions for soy blends had RMSEC=0.5, RMSECV=0.8, and RMSEP=1.2. The average relative error in predicted test set sample compositions was 5% for jatropha blends and 4% for soy blends.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>22608455</pmid><doi>10.1016/j.talanta.2012.03.050</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0039-9140
ispartof Talanta (Oxford), 2012-05, Vol.94, p.320-327
issn 0039-9140
1873-3573
language eng
recordid cdi_proquest_miscellaneous_1671596677
source ScienceDirect Journals
subjects Analytical chemistry
Biodiesel
Biofuels
Blend
Blends
Chemistry
Chemometrics
Chromatographic methods and physical methods associated with chromatography
Chromatography
Diesel
Diesel fuels
Exact sciences and technology
Feedstock
Gas chromatographic methods
Gas Chromatography-Mass Spectrometry
Gasoline
Glycine max - chemistry
Jatropha - chemistry
Least-Squares Analysis
Mathematical models
Polymer blends
Principal Component Analysis
Spectrometric and optical methods
title Predicting feedstock and percent composition for blends of biodiesel with conventional diesel using chemometrics and gas chromatography–mass spectrometry
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A48%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20feedstock%20and%20percent%20composition%20for%20blends%20of%20biodiesel%20with%20conventional%20diesel%20using%20chemometrics%20and%20gas%20chromatography%E2%80%93mass%20spectrometry&rft.jtitle=Talanta%20(Oxford)&rft.au=Schale,%20Stephen%20P.&rft.date=2012-05-30&rft.volume=94&rft.spage=320&rft.epage=327&rft.pages=320-327&rft.issn=0039-9140&rft.eissn=1873-3573&rft.coden=TLNTA2&rft_id=info:doi/10.1016/j.talanta.2012.03.050&rft_dat=%3Cproquest_cross%3E1671596677%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c461t-8a0c24a566a3f0f28cd136b29f5201d42507357cf671474fc93f349c30c551b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1038244466&rft_id=info:pmid/22608455&rfr_iscdi=true