Loading…

Finite-Difference Time-Domain (FDTD) design of gold nanoparticle chains with specific surface plasmon resonance

[Display omitted] •FDTD analysis of plasmonic properties of chain like assembly of GNPs.•Empirical formula for LSPR band of chain like assembly of GNPs.•Useful rules for designing highly effective SERS-active substrates. We employ Finite-Difference Time-Domain (FDTD) simulations to analyze the elect...

Full description

Saved in:
Bibliographic Details
Published in:Journal of molecular structure 2014-08, Vol.1072, p.137-143
Main Authors: Tira, Cristian, Tira, Daniela, Simon, Timea, Astilean, Simion
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c378t-15a3ae4b3c0471439e46ea79963912f68a8711e76e266a1eb64624f81c946ed43
cites cdi_FETCH-LOGICAL-c378t-15a3ae4b3c0471439e46ea79963912f68a8711e76e266a1eb64624f81c946ed43
container_end_page 143
container_issue
container_start_page 137
container_title Journal of molecular structure
container_volume 1072
creator Tira, Cristian
Tira, Daniela
Simon, Timea
Astilean, Simion
description [Display omitted] •FDTD analysis of plasmonic properties of chain like assembly of GNPs.•Empirical formula for LSPR band of chain like assembly of GNPs.•Useful rules for designing highly effective SERS-active substrates. We employ Finite-Difference Time-Domain (FDTD) simulations to analyze the electromagnetic far- and near-field response of gold nanoparticles (NPs) organized in chain-like structures as function of the number of particles and inter-particle distance in structures. As a result an empirical formula to predict the position of collective localized surface plasmon resonance (LSPR) as function of number of particles in the chain is devised. On the other hand the experimental LSPR spectrum recorded from a colloidal solution exhibiting a certain degree of aggregation has been effectively reconstructed by linear combination of individual LSPR contribution as calculated for NP ensembles of different size (monomers, dimers, trimers, etc.). Notably, we find that the maximum of electric field intensity (E2) in between adjacent NPs increases from dimeric to trimeric and tetrameric ensembles, followed by a steady state decrease as the number of NPs per chain further increases. The central gap in a long chain of NPs accommodate the highest field enhancement (‘hot-spots’). Our findings are relevant for designing effective substrates for Surface-Enhanced Raman Scattering (SERS) and plasmonic waveguides.
doi_str_mv 10.1016/j.molstruc.2014.04.086
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671602017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022286014004530</els_id><sourcerecordid>1671602017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-15a3ae4b3c0471439e46ea79963912f68a8711e76e266a1eb64624f81c946ed43</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWP98BcmxHrYm2Zhkb0prVSh4qeeQZidtyu5mTXYVv70p1bPwYJjhvQfzQ-iGkhklVNztZ21o0hBHO2OE8hnJUuIETaiSrFD5dIomhDBWMCXIObpIaU8IoTk8QWHpOz9AsfDOQYTOAl77Nu-hNb7D0-VivbjFNSS_7XBweBuaGnemC72Jg7cNYLvLxoS__LDDqQfrnbc4jdGZ3NU3JrWhwxFSyCkLV-jMmSbB9e-8RO_Lp_X8pVi9Pb_OH1eFLaUaCnpvSgN8U1rCJeVlBVyAkVUlyooyJ5RRklKQApgQhsJGcMG4U9RW2Vjz8hJNj719DB8jpEG3PlloGtNBGJOmQlJBMi-ZreJotTGkFMHpPvrWxG9NiT4Q1nv9R1gfCGuSpUQOPhyDkB_59BB1sv6AsPYR7KDr4P-r-AGvzYhk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671602017</pqid></control><display><type>article</type><title>Finite-Difference Time-Domain (FDTD) design of gold nanoparticle chains with specific surface plasmon resonance</title><source>Elsevier</source><creator>Tira, Cristian ; Tira, Daniela ; Simon, Timea ; Astilean, Simion</creator><creatorcontrib>Tira, Cristian ; Tira, Daniela ; Simon, Timea ; Astilean, Simion</creatorcontrib><description>[Display omitted] •FDTD analysis of plasmonic properties of chain like assembly of GNPs.•Empirical formula for LSPR band of chain like assembly of GNPs.•Useful rules for designing highly effective SERS-active substrates. We employ Finite-Difference Time-Domain (FDTD) simulations to analyze the electromagnetic far- and near-field response of gold nanoparticles (NPs) organized in chain-like structures as function of the number of particles and inter-particle distance in structures. As a result an empirical formula to predict the position of collective localized surface plasmon resonance (LSPR) as function of number of particles in the chain is devised. On the other hand the experimental LSPR spectrum recorded from a colloidal solution exhibiting a certain degree of aggregation has been effectively reconstructed by linear combination of individual LSPR contribution as calculated for NP ensembles of different size (monomers, dimers, trimers, etc.). Notably, we find that the maximum of electric field intensity (E2) in between adjacent NPs increases from dimeric to trimeric and tetrameric ensembles, followed by a steady state decrease as the number of NPs per chain further increases. The central gap in a long chain of NPs accommodate the highest field enhancement (‘hot-spots’). Our findings are relevant for designing effective substrates for Surface-Enhanced Raman Scattering (SERS) and plasmonic waveguides.</description><identifier>ISSN: 0022-2860</identifier><identifier>EISSN: 1872-8014</identifier><identifier>DOI: 10.1016/j.molstruc.2014.04.086</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>FDTD ; Finite difference method ; Finite difference time domain method ; Gold ; Gold nanoparticles ; LSPR ; Mathematical analysis ; Molecular structure ; Plasmons ; Raman scattering ; SERS ; Specific surface</subject><ispartof>Journal of molecular structure, 2014-08, Vol.1072, p.137-143</ispartof><rights>2014 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-15a3ae4b3c0471439e46ea79963912f68a8711e76e266a1eb64624f81c946ed43</citedby><cites>FETCH-LOGICAL-c378t-15a3ae4b3c0471439e46ea79963912f68a8711e76e266a1eb64624f81c946ed43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Tira, Cristian</creatorcontrib><creatorcontrib>Tira, Daniela</creatorcontrib><creatorcontrib>Simon, Timea</creatorcontrib><creatorcontrib>Astilean, Simion</creatorcontrib><title>Finite-Difference Time-Domain (FDTD) design of gold nanoparticle chains with specific surface plasmon resonance</title><title>Journal of molecular structure</title><description>[Display omitted] •FDTD analysis of plasmonic properties of chain like assembly of GNPs.•Empirical formula for LSPR band of chain like assembly of GNPs.•Useful rules for designing highly effective SERS-active substrates. We employ Finite-Difference Time-Domain (FDTD) simulations to analyze the electromagnetic far- and near-field response of gold nanoparticles (NPs) organized in chain-like structures as function of the number of particles and inter-particle distance in structures. As a result an empirical formula to predict the position of collective localized surface plasmon resonance (LSPR) as function of number of particles in the chain is devised. On the other hand the experimental LSPR spectrum recorded from a colloidal solution exhibiting a certain degree of aggregation has been effectively reconstructed by linear combination of individual LSPR contribution as calculated for NP ensembles of different size (monomers, dimers, trimers, etc.). Notably, we find that the maximum of electric field intensity (E2) in between adjacent NPs increases from dimeric to trimeric and tetrameric ensembles, followed by a steady state decrease as the number of NPs per chain further increases. The central gap in a long chain of NPs accommodate the highest field enhancement (‘hot-spots’). Our findings are relevant for designing effective substrates for Surface-Enhanced Raman Scattering (SERS) and plasmonic waveguides.</description><subject>FDTD</subject><subject>Finite difference method</subject><subject>Finite difference time domain method</subject><subject>Gold</subject><subject>Gold nanoparticles</subject><subject>LSPR</subject><subject>Mathematical analysis</subject><subject>Molecular structure</subject><subject>Plasmons</subject><subject>Raman scattering</subject><subject>SERS</subject><subject>Specific surface</subject><issn>0022-2860</issn><issn>1872-8014</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEQxYMoWP98BcmxHrYm2Zhkb0prVSh4qeeQZidtyu5mTXYVv70p1bPwYJjhvQfzQ-iGkhklVNztZ21o0hBHO2OE8hnJUuIETaiSrFD5dIomhDBWMCXIObpIaU8IoTk8QWHpOz9AsfDOQYTOAl77Nu-hNb7D0-VivbjFNSS_7XBweBuaGnemC72Jg7cNYLvLxoS__LDDqQfrnbc4jdGZ3NU3JrWhwxFSyCkLV-jMmSbB9e-8RO_Lp_X8pVi9Pb_OH1eFLaUaCnpvSgN8U1rCJeVlBVyAkVUlyooyJ5RRklKQApgQhsJGcMG4U9RW2Vjz8hJNj719DB8jpEG3PlloGtNBGJOmQlJBMi-ZreJotTGkFMHpPvrWxG9NiT4Q1nv9R1gfCGuSpUQOPhyDkB_59BB1sv6AsPYR7KDr4P-r-AGvzYhk</recordid><startdate>20140825</startdate><enddate>20140825</enddate><creator>Tira, Cristian</creator><creator>Tira, Daniela</creator><creator>Simon, Timea</creator><creator>Astilean, Simion</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20140825</creationdate><title>Finite-Difference Time-Domain (FDTD) design of gold nanoparticle chains with specific surface plasmon resonance</title><author>Tira, Cristian ; Tira, Daniela ; Simon, Timea ; Astilean, Simion</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-15a3ae4b3c0471439e46ea79963912f68a8711e76e266a1eb64624f81c946ed43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>FDTD</topic><topic>Finite difference method</topic><topic>Finite difference time domain method</topic><topic>Gold</topic><topic>Gold nanoparticles</topic><topic>LSPR</topic><topic>Mathematical analysis</topic><topic>Molecular structure</topic><topic>Plasmons</topic><topic>Raman scattering</topic><topic>SERS</topic><topic>Specific surface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tira, Cristian</creatorcontrib><creatorcontrib>Tira, Daniela</creatorcontrib><creatorcontrib>Simon, Timea</creatorcontrib><creatorcontrib>Astilean, Simion</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of molecular structure</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tira, Cristian</au><au>Tira, Daniela</au><au>Simon, Timea</au><au>Astilean, Simion</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite-Difference Time-Domain (FDTD) design of gold nanoparticle chains with specific surface plasmon resonance</atitle><jtitle>Journal of molecular structure</jtitle><date>2014-08-25</date><risdate>2014</risdate><volume>1072</volume><spage>137</spage><epage>143</epage><pages>137-143</pages><issn>0022-2860</issn><eissn>1872-8014</eissn><abstract>[Display omitted] •FDTD analysis of plasmonic properties of chain like assembly of GNPs.•Empirical formula for LSPR band of chain like assembly of GNPs.•Useful rules for designing highly effective SERS-active substrates. We employ Finite-Difference Time-Domain (FDTD) simulations to analyze the electromagnetic far- and near-field response of gold nanoparticles (NPs) organized in chain-like structures as function of the number of particles and inter-particle distance in structures. As a result an empirical formula to predict the position of collective localized surface plasmon resonance (LSPR) as function of number of particles in the chain is devised. On the other hand the experimental LSPR spectrum recorded from a colloidal solution exhibiting a certain degree of aggregation has been effectively reconstructed by linear combination of individual LSPR contribution as calculated for NP ensembles of different size (monomers, dimers, trimers, etc.). Notably, we find that the maximum of electric field intensity (E2) in between adjacent NPs increases from dimeric to trimeric and tetrameric ensembles, followed by a steady state decrease as the number of NPs per chain further increases. The central gap in a long chain of NPs accommodate the highest field enhancement (‘hot-spots’). Our findings are relevant for designing effective substrates for Surface-Enhanced Raman Scattering (SERS) and plasmonic waveguides.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.molstruc.2014.04.086</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2860
ispartof Journal of molecular structure, 2014-08, Vol.1072, p.137-143
issn 0022-2860
1872-8014
language eng
recordid cdi_proquest_miscellaneous_1671602017
source Elsevier
subjects FDTD
Finite difference method
Finite difference time domain method
Gold
Gold nanoparticles
LSPR
Mathematical analysis
Molecular structure
Plasmons
Raman scattering
SERS
Specific surface
title Finite-Difference Time-Domain (FDTD) design of gold nanoparticle chains with specific surface plasmon resonance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A50%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite-Difference%20Time-Domain%20(FDTD)%20design%20of%20gold%20nanoparticle%20chains%20with%20specific%20surface%20plasmon%20resonance&rft.jtitle=Journal%20of%20molecular%20structure&rft.au=Tira,%20Cristian&rft.date=2014-08-25&rft.volume=1072&rft.spage=137&rft.epage=143&rft.pages=137-143&rft.issn=0022-2860&rft.eissn=1872-8014&rft_id=info:doi/10.1016/j.molstruc.2014.04.086&rft_dat=%3Cproquest_cross%3E1671602017%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c378t-15a3ae4b3c0471439e46ea79963912f68a8711e76e266a1eb64624f81c946ed43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671602017&rft_id=info:pmid/&rfr_iscdi=true