Loading…

Coverage adjustment for load balancing with an AP service availability guarantee in WLANs

In wireless local area networks, adjusting the coverage of access points (APs) may force the clients near the coverage boundaries of congested APs to associate with lightly-loaded ones, thus realizing load-balancing. Such an approach has the advantage of requiring no modification on the client softw...

Full description

Saved in:
Bibliographic Details
Published in:Wireless networks 2014-04, Vol.20 (3), p.475-491
Main Authors: Wang, Shengling, Huang, Jianhui, Cheng, Xiuzhen, Chen, Biao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In wireless local area networks, adjusting the coverage of access points (APs) may force the clients near the coverage boundaries of congested APs to associate with lightly-loaded ones, thus realizing load-balancing. Such an approach has the advantage of requiring no modification on the client software/hardware compared to other load-balancing techniques. However, its applicability is undermined by the problems of AP service cheating and AP service loophole resulted from coverage adjustment, which significantly affect the AP service availability. Nevertheless, these two problems are largely ignored by the existent research. To tackle this challenge, a variable polyhedron genetic algorithm (GA) is proposed, which not only provides an AP service availability guarantee but also yields a near-optimal beacon range for each AP when the number of evolutions is large enough. Simulation study indicates that our algorithm is superior over the default 802.11 AP association model in terms of load-balancing and network throughput enhancement. In addition, the variable polyhedron GA outperforms the traditional GA in terms of fitness value and convergence speed.
ISSN:1022-0038
1572-8196
DOI:10.1007/s11276-013-0615-8