Loading…

A Case Study: Designing for Sustainability and Reliability in an Automotive Seat Structure

Recently, sustainability has been a growing concern for many industries and especially for the transportation sector due to it being the second largest energy consumer and largest contributor of anthropogenic greenhouse gas emissions within the European Union. New legal restrictions on the emission...

Full description

Saved in:
Bibliographic Details
Published in:Sustainability 2014, Vol.6 (7), p.4608-4631
Main Authors: Yuce, Celalettin, Karpat, Fatih, Yavuz, Nurettin, Sendeniz, Gökhan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recently, sustainability has been a growing concern for many industries and especially for the transportation sector due to it being the second largest energy consumer and largest contributor of anthropogenic greenhouse gas emissions within the European Union. New legal restrictions on the emission rates have forced the automotive sector to examine different fuel-efficient technologies. Vehicle weight reduction is one of the most important methods of improving fuel efficiency and reducing CO2 emissions. Accordingly, lighter, safer, more fuel efficient, and environmentally sustainable vehicles are a priority for European authorities. In the present work, the passenger seat structure was considered as the area for lightweighting due to its important role in the mass of commercial vehicles in terms of numbers per vehicle. In addition, seat structures presented the best opportunity for weight reduction using new materials and design techniques. Detailed (3D) finite element models of passenger seats were developed for finite element analyses (FEA). To obtain a lightweight and safe seat structure, different materials and thicknesses of profiles were analyzed. Lightweight passenger seat prototypes were developed and an overall 20% weight reduction was achieved including the structural frame, chassis and pillar. In addition, the new passenger seat meets ECE R14 safety norms.
ISSN:2071-1050
2071-1050
DOI:10.3390/su6074608