Loading…

Simulations of protostellar collapse using multigroup radiation hydrodynamics: II. The second collapse

Star formation begins with the gravitational collapse of a dense core inside a molecular cloud. As the collapse progresses, the centre of the core begins to heat up as it becomes optically thick. Simulated collapsing cores without radiative transfer rapidly become thermally supported before reaching...

Full description

Saved in:
Bibliographic Details
Published in:Astronomy and astrophysics (Berlin) 2013-09, Vol.557, p.np-np
Main Authors: Vaytet, Neil, Chabrier, Gilles, Audit, Edouard, Commercon, Benoit, Masson, Jacques, Ferguson, Jason, Delahaye, Franck
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c265t-1fa17999efcdcc6a64d96664e99b71de448e6b5362b39740c6347e2ed45e68873
container_end_page np
container_issue
container_start_page np
container_title Astronomy and astrophysics (Berlin)
container_volume 557
creator Vaytet, Neil
Chabrier, Gilles
Audit, Edouard
Commercon, Benoit
Masson, Jacques
Ferguson, Jason
Delahaye, Franck
description Star formation begins with the gravitational collapse of a dense core inside a molecular cloud. As the collapse progresses, the centre of the core begins to heat up as it becomes optically thick. Simulated collapsing cores without radiative transfer rapidly become thermally supported before reaching high enough temperatures and densities, preventing the formation of stars. Many simulations of protostellar collapse make use of a grey treatment of radiative transfer coupled to the hydrodynamics. In this paper, we follow up on a previous paper on the collapse and formation of Larson's first core using multigroup radiation hydrodynamics (Paper I) by extending the calculations to the second phase of the collapse and the formation of Larson's second core. Our simulations support the idea of a standard initial second core size of ~3 10[sup -3] AU and mass ~1.4 10[sup -3] M. A simple estimate of the characteristic timescale of the second core suggests that the effects of using multigroup radiative transfer may be more important in the long-term evolution of the protostar.
doi_str_mv 10.1051/0004-6361/201321423
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671616046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671616046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-1fa17999efcdcc6a64d96664e99b71de448e6b5362b39740c6347e2ed45e68873</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqXwC1g8soT6bOecjKjiSypiAGbLdZxilMTBTob-exKKujK9Oum5u1cPIdfAboHlsGKMyQwFwoozEBwkFydkAVLwjCmJp2RxJM7JRUpf08ihEAvy8ubbsTGDD12ioaZ9DENIg2saE6kNU_TJ0TH5bkcncPC7GMaeRlP53yX6ua9iqPadab1Nl-SsNk1yV3-5JB8P9-_rp2zz-vi8vttklmM-ZFAbUGVZutpW1qJBWZWIKF1ZbhVUTsrC4TYXyLeiVJJZFFI57iqZOywKJZbk5nB3qvs9ujTo1ic7l-5cGJMGVICATOL_aI5YSD49m1BxQG0MKUVX6z761sS9BqZnz3q2qGeL-uhZ_ABXA3C0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1566842536</pqid></control><display><type>article</type><title>Simulations of protostellar collapse using multigroup radiation hydrodynamics: II. The second collapse</title><source>EZB Electronic Journals Library</source><creator>Vaytet, Neil ; Chabrier, Gilles ; Audit, Edouard ; Commercon, Benoit ; Masson, Jacques ; Ferguson, Jason ; Delahaye, Franck</creator><creatorcontrib>Vaytet, Neil ; Chabrier, Gilles ; Audit, Edouard ; Commercon, Benoit ; Masson, Jacques ; Ferguson, Jason ; Delahaye, Franck</creatorcontrib><description>Star formation begins with the gravitational collapse of a dense core inside a molecular cloud. As the collapse progresses, the centre of the core begins to heat up as it becomes optically thick. Simulated collapsing cores without radiative transfer rapidly become thermally supported before reaching high enough temperatures and densities, preventing the formation of stars. Many simulations of protostellar collapse make use of a grey treatment of radiative transfer coupled to the hydrodynamics. In this paper, we follow up on a previous paper on the collapse and formation of Larson's first core using multigroup radiation hydrodynamics (Paper I) by extending the calculations to the second phase of the collapse and the formation of Larson's second core. Our simulations support the idea of a standard initial second core size of ~3 10[sup -3] AU and mass ~1.4 10[sup -3] M. A simple estimate of the characteristic timescale of the second core suggests that the effects of using multigroup radiative transfer may be more important in the long-term evolution of the protostar.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361/201321423</identifier><language>eng</language><subject>Collapse ; Fluid dynamics ; Fluid flow ; Formations ; Hydrodynamics ; Radiative transfer ; Simulation</subject><ispartof>Astronomy and astrophysics (Berlin), 2013-09, Vol.557, p.np-np</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c265t-1fa17999efcdcc6a64d96664e99b71de448e6b5362b39740c6347e2ed45e68873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Vaytet, Neil</creatorcontrib><creatorcontrib>Chabrier, Gilles</creatorcontrib><creatorcontrib>Audit, Edouard</creatorcontrib><creatorcontrib>Commercon, Benoit</creatorcontrib><creatorcontrib>Masson, Jacques</creatorcontrib><creatorcontrib>Ferguson, Jason</creatorcontrib><creatorcontrib>Delahaye, Franck</creatorcontrib><title>Simulations of protostellar collapse using multigroup radiation hydrodynamics: II. The second collapse</title><title>Astronomy and astrophysics (Berlin)</title><description>Star formation begins with the gravitational collapse of a dense core inside a molecular cloud. As the collapse progresses, the centre of the core begins to heat up as it becomes optically thick. Simulated collapsing cores without radiative transfer rapidly become thermally supported before reaching high enough temperatures and densities, preventing the formation of stars. Many simulations of protostellar collapse make use of a grey treatment of radiative transfer coupled to the hydrodynamics. In this paper, we follow up on a previous paper on the collapse and formation of Larson's first core using multigroup radiation hydrodynamics (Paper I) by extending the calculations to the second phase of the collapse and the formation of Larson's second core. Our simulations support the idea of a standard initial second core size of ~3 10[sup -3] AU and mass ~1.4 10[sup -3] M. A simple estimate of the characteristic timescale of the second core suggests that the effects of using multigroup radiative transfer may be more important in the long-term evolution of the protostar.</description><subject>Collapse</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Formations</subject><subject>Hydrodynamics</subject><subject>Radiative transfer</subject><subject>Simulation</subject><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqXwC1g8soT6bOecjKjiSypiAGbLdZxilMTBTob-exKKujK9Oum5u1cPIdfAboHlsGKMyQwFwoozEBwkFydkAVLwjCmJp2RxJM7JRUpf08ihEAvy8ubbsTGDD12ioaZ9DENIg2saE6kNU_TJ0TH5bkcncPC7GMaeRlP53yX6ua9iqPadab1Nl-SsNk1yV3-5JB8P9-_rp2zz-vi8vttklmM-ZFAbUGVZutpW1qJBWZWIKF1ZbhVUTsrC4TYXyLeiVJJZFFI57iqZOywKJZbk5nB3qvs9ujTo1ic7l-5cGJMGVICATOL_aI5YSD49m1BxQG0MKUVX6z761sS9BqZnz3q2qGeL-uhZ_ABXA3C0</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Vaytet, Neil</creator><creator>Chabrier, Gilles</creator><creator>Audit, Edouard</creator><creator>Commercon, Benoit</creator><creator>Masson, Jacques</creator><creator>Ferguson, Jason</creator><creator>Delahaye, Franck</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20130901</creationdate><title>Simulations of protostellar collapse using multigroup radiation hydrodynamics</title><author>Vaytet, Neil ; Chabrier, Gilles ; Audit, Edouard ; Commercon, Benoit ; Masson, Jacques ; Ferguson, Jason ; Delahaye, Franck</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-1fa17999efcdcc6a64d96664e99b71de448e6b5362b39740c6347e2ed45e68873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Collapse</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Formations</topic><topic>Hydrodynamics</topic><topic>Radiative transfer</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vaytet, Neil</creatorcontrib><creatorcontrib>Chabrier, Gilles</creatorcontrib><creatorcontrib>Audit, Edouard</creatorcontrib><creatorcontrib>Commercon, Benoit</creatorcontrib><creatorcontrib>Masson, Jacques</creatorcontrib><creatorcontrib>Ferguson, Jason</creatorcontrib><creatorcontrib>Delahaye, Franck</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vaytet, Neil</au><au>Chabrier, Gilles</au><au>Audit, Edouard</au><au>Commercon, Benoit</au><au>Masson, Jacques</au><au>Ferguson, Jason</au><au>Delahaye, Franck</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulations of protostellar collapse using multigroup radiation hydrodynamics: II. The second collapse</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2013-09-01</date><risdate>2013</risdate><volume>557</volume><spage>np</spage><epage>np</epage><pages>np-np</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><abstract>Star formation begins with the gravitational collapse of a dense core inside a molecular cloud. As the collapse progresses, the centre of the core begins to heat up as it becomes optically thick. Simulated collapsing cores without radiative transfer rapidly become thermally supported before reaching high enough temperatures and densities, preventing the formation of stars. Many simulations of protostellar collapse make use of a grey treatment of radiative transfer coupled to the hydrodynamics. In this paper, we follow up on a previous paper on the collapse and formation of Larson's first core using multigroup radiation hydrodynamics (Paper I) by extending the calculations to the second phase of the collapse and the formation of Larson's second core. Our simulations support the idea of a standard initial second core size of ~3 10[sup -3] AU and mass ~1.4 10[sup -3] M. A simple estimate of the characteristic timescale of the second core suggests that the effects of using multigroup radiative transfer may be more important in the long-term evolution of the protostar.</abstract><doi>10.1051/0004-6361/201321423</doi></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2013-09, Vol.557, p.np-np
issn 0004-6361
1432-0746
language eng
recordid cdi_proquest_miscellaneous_1671616046
source EZB Electronic Journals Library
subjects Collapse
Fluid dynamics
Fluid flow
Formations
Hydrodynamics
Radiative transfer
Simulation
title Simulations of protostellar collapse using multigroup radiation hydrodynamics: II. The second collapse
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A52%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulations%20of%20protostellar%20collapse%20using%20multigroup%20radiation%20hydrodynamics:%20II.%20The%20second%20collapse&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Vaytet,%20Neil&rft.date=2013-09-01&rft.volume=557&rft.spage=np&rft.epage=np&rft.pages=np-np&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/201321423&rft_dat=%3Cproquest_cross%3E1671616046%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c265t-1fa17999efcdcc6a64d96664e99b71de448e6b5362b39740c6347e2ed45e68873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1566842536&rft_id=info:pmid/&rfr_iscdi=true