Loading…
Implications of surface passivation on physicochemical and bioimaging properties of carbon dots
The prevalence of surface functionalized carbon dots (CDs) with intriguing fluorescence properties has given a new dimension to the field of bioimaging and is perceived as a promising alternative to quantum dots (QDs). In the present work, polyethylene glycol (PEG) and polyethyleneimine (PEI) passiv...
Saved in:
Published in: | RSC advances 2014-01, Vol.4 (40), p.20915-20921 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The prevalence of surface functionalized carbon dots (CDs) with intriguing fluorescence properties has given a new dimension to the field of bioimaging and is perceived as a promising alternative to quantum dots (QDs). In the present work, polyethylene glycol (PEG) and polyethyleneimine (PEI) passivated CDs have been synthesized by one-step hydrothermal carbonization of chitosan. We have made a comparative analysis of the physicochemical and bioimaging properties of PEI based carbon dots (CD-PEI) and PEG based carbon dots (CD-PEG). This article further provides an insight into the role of surface functionality in controlling the bioimaging efficiencies of CDs. The concentration dependent cytotoxic effects of CD-PEI and CD-PEG were studied on normal (BHK-21) and cancer (A549) cell lines and we explored the competitive performance of CD-PEI compared to CD-PEG for bio-applications. |
---|---|
ISSN: | 2046-2069 2046-2069 |
DOI: | 10.1039/C4RA02017K |