Loading…

Estimation of Snow Water Equivalence Using the Polarimetric Scanning Radiometer From the Cold Land Processes Experiments (CLPX03)

In this letter, we investigated an inversion technique to estimate snow water equivalence (SWE) under Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) sensor configurations. Through our numerical simulations by the advanced integral equation model (AIEM), we found that the...

Full description

Saved in:
Bibliographic Details
Published in:IEEE geoscience and remote sensing letters 2011-03, Vol.8 (2), p.359-363
Main Authors: Lingmei Jiang, Jiancheng Shi, Tjuatja, S, Kun Shan Chen, Jinyang Du, Lixin Zhang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c405t-357bb3d307b81e69076ad092748d1dafc005a615a33be2f1d04a4dc39a5979063
cites cdi_FETCH-LOGICAL-c405t-357bb3d307b81e69076ad092748d1dafc005a615a33be2f1d04a4dc39a5979063
container_end_page 363
container_issue 2
container_start_page 359
container_title IEEE geoscience and remote sensing letters
container_volume 8
creator Lingmei Jiang
Jiancheng Shi
Tjuatja, S
Kun Shan Chen
Jinyang Du
Lixin Zhang
description In this letter, we investigated an inversion technique to estimate snow water equivalence (SWE) under Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) sensor configurations. Through our numerical simulations by the advanced integral equation model (AIEM), we found that the ground surface emission signals at 18.7 and 36.5 GHz were highly correlated regardless of the ground surface properties (dielectric and roughness properties) and can be well described by a linear function. It leads to a new development for describing the relationship between snow emission signals observed at 18.7 and 36.5 GHz as a linear function. The intercept (A) and slope (B) of this linear equation depend only on snow properties and can be estimated from the observations directly. This development provides a new technique that separates the snowpack and ground surface emission signals. With the parameterized snow emission model from a simulated database that was derived using a multiscattering microwave emission model (dense medium radiative transfer model-AIEM-matrix doubling) over dry snow covers, we developed an algorithm to estimate the SWE using the microwave radiometer measurements. Evaluations on this technique using both the model simulated data and the field experimental data with the airborne Polarimetric Scanning Radiometer data from National Aeronautics and Space Administration Cold Land Processes Experiment 2003 showed promising results, with root-mean-square errors of 32.8 and 31.85 mm, respectively. This newly developed inversion method has the advantages over the AMSR-E SWE baseline algorithm when applied to high-resolution airborne observations.
doi_str_mv 10.1109/LGRS.2010.2076345
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671616935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5604644</ieee_id><sourcerecordid>2289326131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-357bb3d307b81e69076ad092748d1dafc005a615a33be2f1d04a4dc39a5979063</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEEqXwAxAXiwvlkHYcf-aIVtuCFIlVtxW9WV57Aqmy9tbOFjjyz-uwFQcOPc3X844081bVWwqnlEJ71l1crk8bKGUDSjIunlVHVAhdg1D0-ZxzUYtW37ysXuV8C9BwrdVR9WeZp2FrpyEGEnuyDvEn-WYnTGR5tx_u7YjBIbnOQ_hOph9IVnG0adjilAZH1s6GME8urR9iaRbZeYrbv-Qijp50NniyStFhzpjJ8tcOZ3WYMjlZdKsbYB9fVy96O2Z88xiPq-vz5dXic919vfiy-NTVjoOYaibUZsM8A7XRFGVbrrQe2kZx7am3vQMQVlJhGdtg01MP3HLvWGtFq1qQ7Lj6cNi7S_Fuj3ky2yE7HEcbMO6z0RKYEqrRhTx5kqRSUUlly0RB3_-H3sZ9CuUOo4XknHKuCkQPkEsx54S92ZUn2PTbUDCze2Z2z8zumUf3iubdQTMg4j9eSOBlK3sASPiVJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856441447</pqid></control><display><type>article</type><title>Estimation of Snow Water Equivalence Using the Polarimetric Scanning Radiometer From the Cold Land Processes Experiments (CLPX03)</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Lingmei Jiang ; Jiancheng Shi ; Tjuatja, S ; Kun Shan Chen ; Jinyang Du ; Lixin Zhang</creator><creatorcontrib>Lingmei Jiang ; Jiancheng Shi ; Tjuatja, S ; Kun Shan Chen ; Jinyang Du ; Lixin Zhang</creatorcontrib><description>In this letter, we investigated an inversion technique to estimate snow water equivalence (SWE) under Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) sensor configurations. Through our numerical simulations by the advanced integral equation model (AIEM), we found that the ground surface emission signals at 18.7 and 36.5 GHz were highly correlated regardless of the ground surface properties (dielectric and roughness properties) and can be well described by a linear function. It leads to a new development for describing the relationship between snow emission signals observed at 18.7 and 36.5 GHz as a linear function. The intercept (A) and slope (B) of this linear equation depend only on snow properties and can be estimated from the observations directly. This development provides a new technique that separates the snowpack and ground surface emission signals. With the parameterized snow emission model from a simulated database that was derived using a multiscattering microwave emission model (dense medium radiative transfer model-AIEM-matrix doubling) over dry snow covers, we developed an algorithm to estimate the SWE using the microwave radiometer measurements. Evaluations on this technique using both the model simulated data and the field experimental data with the airborne Polarimetric Scanning Radiometer data from National Aeronautics and Space Administration Cold Land Processes Experiment 2003 showed promising results, with root-mean-square errors of 32.8 and 31.85 mm, respectively. This newly developed inversion method has the advantages over the AMSR-E SWE baseline algorithm when applied to high-resolution airborne observations.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2010.2076345</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Cold Land Processes Experiment 2003 (CLPX03) ; Computer simulation ; Emission ; Grounds ; inversion technique ; Mathematical model ; Mathematical models ; Microwave measurements ; Microwave radiometry ; Microwave theory and techniques ; parameterized model ; passive microwave ; Radiometers ; Remote sensing ; Scanning ; Snow ; snow water equivalence (SWE)</subject><ispartof>IEEE geoscience and remote sensing letters, 2011-03, Vol.8 (2), p.359-363</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-357bb3d307b81e69076ad092748d1dafc005a615a33be2f1d04a4dc39a5979063</citedby><cites>FETCH-LOGICAL-c405t-357bb3d307b81e69076ad092748d1dafc005a615a33be2f1d04a4dc39a5979063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5604644$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Lingmei Jiang</creatorcontrib><creatorcontrib>Jiancheng Shi</creatorcontrib><creatorcontrib>Tjuatja, S</creatorcontrib><creatorcontrib>Kun Shan Chen</creatorcontrib><creatorcontrib>Jinyang Du</creatorcontrib><creatorcontrib>Lixin Zhang</creatorcontrib><title>Estimation of Snow Water Equivalence Using the Polarimetric Scanning Radiometer From the Cold Land Processes Experiments (CLPX03)</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>In this letter, we investigated an inversion technique to estimate snow water equivalence (SWE) under Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) sensor configurations. Through our numerical simulations by the advanced integral equation model (AIEM), we found that the ground surface emission signals at 18.7 and 36.5 GHz were highly correlated regardless of the ground surface properties (dielectric and roughness properties) and can be well described by a linear function. It leads to a new development for describing the relationship between snow emission signals observed at 18.7 and 36.5 GHz as a linear function. The intercept (A) and slope (B) of this linear equation depend only on snow properties and can be estimated from the observations directly. This development provides a new technique that separates the snowpack and ground surface emission signals. With the parameterized snow emission model from a simulated database that was derived using a multiscattering microwave emission model (dense medium radiative transfer model-AIEM-matrix doubling) over dry snow covers, we developed an algorithm to estimate the SWE using the microwave radiometer measurements. Evaluations on this technique using both the model simulated data and the field experimental data with the airborne Polarimetric Scanning Radiometer data from National Aeronautics and Space Administration Cold Land Processes Experiment 2003 showed promising results, with root-mean-square errors of 32.8 and 31.85 mm, respectively. This newly developed inversion method has the advantages over the AMSR-E SWE baseline algorithm when applied to high-resolution airborne observations.</description><subject>Algorithms</subject><subject>Cold Land Processes Experiment 2003 (CLPX03)</subject><subject>Computer simulation</subject><subject>Emission</subject><subject>Grounds</subject><subject>inversion technique</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Microwave measurements</subject><subject>Microwave radiometry</subject><subject>Microwave theory and techniques</subject><subject>parameterized model</subject><subject>passive microwave</subject><subject>Radiometers</subject><subject>Remote sensing</subject><subject>Scanning</subject><subject>Snow</subject><subject>snow water equivalence (SWE)</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhiMEEqXwAxAXiwvlkHYcf-aIVtuCFIlVtxW9WV57Aqmy9tbOFjjyz-uwFQcOPc3X844081bVWwqnlEJ71l1crk8bKGUDSjIunlVHVAhdg1D0-ZxzUYtW37ysXuV8C9BwrdVR9WeZp2FrpyEGEnuyDvEn-WYnTGR5tx_u7YjBIbnOQ_hOph9IVnG0adjilAZH1s6GME8urR9iaRbZeYrbv-Qijp50NniyStFhzpjJ8tcOZ3WYMjlZdKsbYB9fVy96O2Z88xiPq-vz5dXic919vfiy-NTVjoOYaibUZsM8A7XRFGVbrrQe2kZx7am3vQMQVlJhGdtg01MP3HLvWGtFq1qQ7Lj6cNi7S_Fuj3ky2yE7HEcbMO6z0RKYEqrRhTx5kqRSUUlly0RB3_-H3sZ9CuUOo4XknHKuCkQPkEsx54S92ZUn2PTbUDCze2Z2z8zumUf3iubdQTMg4j9eSOBlK3sASPiVJQ</recordid><startdate>201103</startdate><enddate>201103</enddate><creator>Lingmei Jiang</creator><creator>Jiancheng Shi</creator><creator>Tjuatja, S</creator><creator>Kun Shan Chen</creator><creator>Jinyang Du</creator><creator>Lixin Zhang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>201103</creationdate><title>Estimation of Snow Water Equivalence Using the Polarimetric Scanning Radiometer From the Cold Land Processes Experiments (CLPX03)</title><author>Lingmei Jiang ; Jiancheng Shi ; Tjuatja, S ; Kun Shan Chen ; Jinyang Du ; Lixin Zhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-357bb3d307b81e69076ad092748d1dafc005a615a33be2f1d04a4dc39a5979063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Cold Land Processes Experiment 2003 (CLPX03)</topic><topic>Computer simulation</topic><topic>Emission</topic><topic>Grounds</topic><topic>inversion technique</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Microwave measurements</topic><topic>Microwave radiometry</topic><topic>Microwave theory and techniques</topic><topic>parameterized model</topic><topic>passive microwave</topic><topic>Radiometers</topic><topic>Remote sensing</topic><topic>Scanning</topic><topic>Snow</topic><topic>snow water equivalence (SWE)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lingmei Jiang</creatorcontrib><creatorcontrib>Jiancheng Shi</creatorcontrib><creatorcontrib>Tjuatja, S</creatorcontrib><creatorcontrib>Kun Shan Chen</creatorcontrib><creatorcontrib>Jinyang Du</creatorcontrib><creatorcontrib>Lixin Zhang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lingmei Jiang</au><au>Jiancheng Shi</au><au>Tjuatja, S</au><au>Kun Shan Chen</au><au>Jinyang Du</au><au>Lixin Zhang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of Snow Water Equivalence Using the Polarimetric Scanning Radiometer From the Cold Land Processes Experiments (CLPX03)</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2011-03</date><risdate>2011</risdate><volume>8</volume><issue>2</issue><spage>359</spage><epage>363</epage><pages>359-363</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>In this letter, we investigated an inversion technique to estimate snow water equivalence (SWE) under Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) sensor configurations. Through our numerical simulations by the advanced integral equation model (AIEM), we found that the ground surface emission signals at 18.7 and 36.5 GHz were highly correlated regardless of the ground surface properties (dielectric and roughness properties) and can be well described by a linear function. It leads to a new development for describing the relationship between snow emission signals observed at 18.7 and 36.5 GHz as a linear function. The intercept (A) and slope (B) of this linear equation depend only on snow properties and can be estimated from the observations directly. This development provides a new technique that separates the snowpack and ground surface emission signals. With the parameterized snow emission model from a simulated database that was derived using a multiscattering microwave emission model (dense medium radiative transfer model-AIEM-matrix doubling) over dry snow covers, we developed an algorithm to estimate the SWE using the microwave radiometer measurements. Evaluations on this technique using both the model simulated data and the field experimental data with the airborne Polarimetric Scanning Radiometer data from National Aeronautics and Space Administration Cold Land Processes Experiment 2003 showed promising results, with root-mean-square errors of 32.8 and 31.85 mm, respectively. This newly developed inversion method has the advantages over the AMSR-E SWE baseline algorithm when applied to high-resolution airborne observations.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2010.2076345</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2011-03, Vol.8 (2), p.359-363
issn 1545-598X
1558-0571
language eng
recordid cdi_proquest_miscellaneous_1671616935
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Cold Land Processes Experiment 2003 (CLPX03)
Computer simulation
Emission
Grounds
inversion technique
Mathematical model
Mathematical models
Microwave measurements
Microwave radiometry
Microwave theory and techniques
parameterized model
passive microwave
Radiometers
Remote sensing
Scanning
Snow
snow water equivalence (SWE)
title Estimation of Snow Water Equivalence Using the Polarimetric Scanning Radiometer From the Cold Land Processes Experiments (CLPX03)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A32%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20Snow%20Water%20Equivalence%20Using%20the%20Polarimetric%20Scanning%20Radiometer%20From%20the%20Cold%20Land%20Processes%20Experiments%20(CLPX03)&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Lingmei%20Jiang&rft.date=2011-03&rft.volume=8&rft.issue=2&rft.spage=359&rft.epage=363&rft.pages=359-363&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2010.2076345&rft_dat=%3Cproquest_ieee_%3E2289326131%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c405t-357bb3d307b81e69076ad092748d1dafc005a615a33be2f1d04a4dc39a5979063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=856441447&rft_id=info:pmid/&rft_ieee_id=5604644&rfr_iscdi=true