Loading…
Silicon–hydrogen bond effects on aluminum-induced crystallization of hydrogenated amorphous silicon films
The effects of hydrogen dilution on aluminum-induced crystallization (AIC) of hydrogenated amorphous silicon (a-Si:H) films have been studied. The Raman spectra showed that the short-range order (SRO) and the intermedium-range order (IRO) of the as-deposited a-Si films increased with the increase of...
Saved in:
Published in: | Journal of crystal growth 2014-09, Vol.402, p.99-103 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c441t-ca069a0589eb1ab67557b6c6ddfa2be1ad599ab46ba2c5d987a141e8f43c4eda3 |
---|---|
cites | cdi_FETCH-LOGICAL-c441t-ca069a0589eb1ab67557b6c6ddfa2be1ad599ab46ba2c5d987a141e8f43c4eda3 |
container_end_page | 103 |
container_issue | |
container_start_page | 99 |
container_title | Journal of crystal growth |
container_volume | 402 |
creator | Zhai, Xiaoli Tan, Ruiqin Wang, Weiyan Huang, Jinhua Zhuang, Fuqiang Dai, Shixun Song, Weijie |
description | The effects of hydrogen dilution on aluminum-induced crystallization (AIC) of hydrogenated amorphous silicon (a-Si:H) films have been studied. The Raman spectra showed that the short-range order (SRO) and the intermedium-range order (IRO) of the as-deposited a-Si films increased with the increase of the H2 dilution from 0% to 20%. The optical microscope (OM) and X-ray diffraction (XRD) observation revealed that, compared to the a-Si:H film deposited in pure Ar, the a-Si:H films deposited with H2 dilution in the range of 3–8% possessed a lower crystallization rate while the a-Si:H films deposited with high H2 dilution in the range of 15–20% possessed a faster crystallization rate. It was found that majority of the hydrogen existed in the form of monohydride (SiH) bond in the a-Si:H films with H2 dilution ratio of 3–8%, the bonding energy of which was higher than that of Si–Si bond, leading to a lower crystallization rate of a-Si:H films. While the dihydride (SiH2) bond became dominant in the a-Si:H films with high H2 dilution of 15–20%, the bonding energy of which was lower than that of Si–Si bond, thus accelerating the crystallization rate. Therefore, it was illustrated that not the hydrogen concentration but the form of silicon–hydrogen bond determined the AIC process of a-Si:H films.
•Si–H2 bonds became dominant compared to Si–H bonds with the increase of H2 dilution.•Crystallization of a-Si:H films with 3–8% H2 dilution were lower than a-Si films.•Crystallization of a-Si:H films with 15–20% H2 dilution were faster than a-Si films.•The form of Si–H bond determined the AIC process of a-Si:H films. |
doi_str_mv | 10.1016/j.jcrysgro.2014.05.013 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671617142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024814003595</els_id><sourcerecordid>1671617142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-ca069a0589eb1ab67557b6c6ddfa2be1ad599ab46ba2c5d987a141e8f43c4eda3</originalsourceid><addsrcrecordid>eNqFkLtOwzAUhi0EEqXwCigLEkuCnTpOsoEQN6kSAzBbJ74UF8cudoJUJt6BN-RJcFVgZbEHf__5fT6EjgkuCCbsbFksRVjHRfBFiQktcFVgMttBE9LUs7zCuNxFk3SWOS5ps48OYlxinJIET9DLg7FGePf18fm8lsEvlMs672SmtFZiiJl3GdixN27sc-PkKJTMNnUDWGveYTAJ8Dr7DcOQ3qH3YfXsx5jF7fRMG9vHQ7SnwUZ19HNP0dP11ePlbT6_v7m7vJjnglIy5AIwawFXTas6Ah2rq6rumGBSaig7RUBWbQsdZR2UopJtUwOhRDWazgRVEmZTdLqduwr-dVRx4L2JQlkLTqVPccLqtHxNaJlQtkVF8DEGpfkqmB7CmhPMN3b5kv_a5Ru7HFc82U3Bk58OiAKsDuCEiX_psmGMspYl7nzLqbTwm1GBR2GUSxZNSH659Oa_qm_r55jA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671617142</pqid></control><display><type>article</type><title>Silicon–hydrogen bond effects on aluminum-induced crystallization of hydrogenated amorphous silicon films</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Zhai, Xiaoli ; Tan, Ruiqin ; Wang, Weiyan ; Huang, Jinhua ; Zhuang, Fuqiang ; Dai, Shixun ; Song, Weijie</creator><creatorcontrib>Zhai, Xiaoli ; Tan, Ruiqin ; Wang, Weiyan ; Huang, Jinhua ; Zhuang, Fuqiang ; Dai, Shixun ; Song, Weijie</creatorcontrib><description>The effects of hydrogen dilution on aluminum-induced crystallization (AIC) of hydrogenated amorphous silicon (a-Si:H) films have been studied. The Raman spectra showed that the short-range order (SRO) and the intermedium-range order (IRO) of the as-deposited a-Si films increased with the increase of the H2 dilution from 0% to 20%. The optical microscope (OM) and X-ray diffraction (XRD) observation revealed that, compared to the a-Si:H film deposited in pure Ar, the a-Si:H films deposited with H2 dilution in the range of 3–8% possessed a lower crystallization rate while the a-Si:H films deposited with high H2 dilution in the range of 15–20% possessed a faster crystallization rate. It was found that majority of the hydrogen existed in the form of monohydride (SiH) bond in the a-Si:H films with H2 dilution ratio of 3–8%, the bonding energy of which was higher than that of Si–Si bond, leading to a lower crystallization rate of a-Si:H films. While the dihydride (SiH2) bond became dominant in the a-Si:H films with high H2 dilution of 15–20%, the bonding energy of which was lower than that of Si–Si bond, thus accelerating the crystallization rate. Therefore, it was illustrated that not the hydrogen concentration but the form of silicon–hydrogen bond determined the AIC process of a-Si:H films.
•Si–H2 bonds became dominant compared to Si–H bonds with the increase of H2 dilution.•Crystallization of a-Si:H films with 3–8% H2 dilution were lower than a-Si films.•Crystallization of a-Si:H films with 15–20% H2 dilution were faster than a-Si films.•The form of Si–H bond determined the AIC process of a-Si:H films.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2014.05.013</identifier><identifier>CODEN: JCRGAE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. Crystallization ; A3. Physical vapor deposition processes ; Aluminum ; Amorphous silicon ; Applied sciences ; B2. Semiconducting silicon ; B3. Solar cells ; Bonding ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Crystallization ; Deposition ; Deposition by sputtering ; Dilution ; Energy ; Equations of state, phase equilibria, and phase transitions ; Exact sciences and technology ; Hydrogen storage ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; Natural energy ; Photovoltaic conversion ; Physics ; Short range order ; Solar cells. Photoelectrochemical cells ; Solar energy ; Solid-solid transitions ; Specific phase transitions</subject><ispartof>Journal of crystal growth, 2014-09, Vol.402, p.99-103</ispartof><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-ca069a0589eb1ab67557b6c6ddfa2be1ad599ab46ba2c5d987a141e8f43c4eda3</citedby><cites>FETCH-LOGICAL-c441t-ca069a0589eb1ab67557b6c6ddfa2be1ad599ab46ba2c5d987a141e8f43c4eda3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28664696$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhai, Xiaoli</creatorcontrib><creatorcontrib>Tan, Ruiqin</creatorcontrib><creatorcontrib>Wang, Weiyan</creatorcontrib><creatorcontrib>Huang, Jinhua</creatorcontrib><creatorcontrib>Zhuang, Fuqiang</creatorcontrib><creatorcontrib>Dai, Shixun</creatorcontrib><creatorcontrib>Song, Weijie</creatorcontrib><title>Silicon–hydrogen bond effects on aluminum-induced crystallization of hydrogenated amorphous silicon films</title><title>Journal of crystal growth</title><description>The effects of hydrogen dilution on aluminum-induced crystallization (AIC) of hydrogenated amorphous silicon (a-Si:H) films have been studied. The Raman spectra showed that the short-range order (SRO) and the intermedium-range order (IRO) of the as-deposited a-Si films increased with the increase of the H2 dilution from 0% to 20%. The optical microscope (OM) and X-ray diffraction (XRD) observation revealed that, compared to the a-Si:H film deposited in pure Ar, the a-Si:H films deposited with H2 dilution in the range of 3–8% possessed a lower crystallization rate while the a-Si:H films deposited with high H2 dilution in the range of 15–20% possessed a faster crystallization rate. It was found that majority of the hydrogen existed in the form of monohydride (SiH) bond in the a-Si:H films with H2 dilution ratio of 3–8%, the bonding energy of which was higher than that of Si–Si bond, leading to a lower crystallization rate of a-Si:H films. While the dihydride (SiH2) bond became dominant in the a-Si:H films with high H2 dilution of 15–20%, the bonding energy of which was lower than that of Si–Si bond, thus accelerating the crystallization rate. Therefore, it was illustrated that not the hydrogen concentration but the form of silicon–hydrogen bond determined the AIC process of a-Si:H films.
•Si–H2 bonds became dominant compared to Si–H bonds with the increase of H2 dilution.•Crystallization of a-Si:H films with 3–8% H2 dilution were lower than a-Si films.•Crystallization of a-Si:H films with 15–20% H2 dilution were faster than a-Si films.•The form of Si–H bond determined the AIC process of a-Si:H films.</description><subject>A1. Crystallization</subject><subject>A3. Physical vapor deposition processes</subject><subject>Aluminum</subject><subject>Amorphous silicon</subject><subject>Applied sciences</subject><subject>B2. Semiconducting silicon</subject><subject>B3. Solar cells</subject><subject>Bonding</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystallization</subject><subject>Deposition</subject><subject>Deposition by sputtering</subject><subject>Dilution</subject><subject>Energy</subject><subject>Equations of state, phase equilibria, and phase transitions</subject><subject>Exact sciences and technology</subject><subject>Hydrogen storage</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Natural energy</subject><subject>Photovoltaic conversion</subject><subject>Physics</subject><subject>Short range order</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><subject>Solid-solid transitions</subject><subject>Specific phase transitions</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOwzAUhi0EEqXwCigLEkuCnTpOsoEQN6kSAzBbJ74UF8cudoJUJt6BN-RJcFVgZbEHf__5fT6EjgkuCCbsbFksRVjHRfBFiQktcFVgMttBE9LUs7zCuNxFk3SWOS5ps48OYlxinJIET9DLg7FGePf18fm8lsEvlMs672SmtFZiiJl3GdixN27sc-PkKJTMNnUDWGveYTAJ8Dr7DcOQ3qH3YfXsx5jF7fRMG9vHQ7SnwUZ19HNP0dP11ePlbT6_v7m7vJjnglIy5AIwawFXTas6Ah2rq6rumGBSaig7RUBWbQsdZR2UopJtUwOhRDWazgRVEmZTdLqduwr-dVRx4L2JQlkLTqVPccLqtHxNaJlQtkVF8DEGpfkqmB7CmhPMN3b5kv_a5Ru7HFc82U3Bk58OiAKsDuCEiX_psmGMspYl7nzLqbTwm1GBR2GUSxZNSH659Oa_qm_r55jA</recordid><startdate>20140915</startdate><enddate>20140915</enddate><creator>Zhai, Xiaoli</creator><creator>Tan, Ruiqin</creator><creator>Wang, Weiyan</creator><creator>Huang, Jinhua</creator><creator>Zhuang, Fuqiang</creator><creator>Dai, Shixun</creator><creator>Song, Weijie</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140915</creationdate><title>Silicon–hydrogen bond effects on aluminum-induced crystallization of hydrogenated amorphous silicon films</title><author>Zhai, Xiaoli ; Tan, Ruiqin ; Wang, Weiyan ; Huang, Jinhua ; Zhuang, Fuqiang ; Dai, Shixun ; Song, Weijie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-ca069a0589eb1ab67557b6c6ddfa2be1ad599ab46ba2c5d987a141e8f43c4eda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>A1. Crystallization</topic><topic>A3. Physical vapor deposition processes</topic><topic>Aluminum</topic><topic>Amorphous silicon</topic><topic>Applied sciences</topic><topic>B2. Semiconducting silicon</topic><topic>B3. Solar cells</topic><topic>Bonding</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystallization</topic><topic>Deposition</topic><topic>Deposition by sputtering</topic><topic>Dilution</topic><topic>Energy</topic><topic>Equations of state, phase equilibria, and phase transitions</topic><topic>Exact sciences and technology</topic><topic>Hydrogen storage</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Natural energy</topic><topic>Photovoltaic conversion</topic><topic>Physics</topic><topic>Short range order</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><topic>Solid-solid transitions</topic><topic>Specific phase transitions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhai, Xiaoli</creatorcontrib><creatorcontrib>Tan, Ruiqin</creatorcontrib><creatorcontrib>Wang, Weiyan</creatorcontrib><creatorcontrib>Huang, Jinhua</creatorcontrib><creatorcontrib>Zhuang, Fuqiang</creatorcontrib><creatorcontrib>Dai, Shixun</creatorcontrib><creatorcontrib>Song, Weijie</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhai, Xiaoli</au><au>Tan, Ruiqin</au><au>Wang, Weiyan</au><au>Huang, Jinhua</au><au>Zhuang, Fuqiang</au><au>Dai, Shixun</au><au>Song, Weijie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silicon–hydrogen bond effects on aluminum-induced crystallization of hydrogenated amorphous silicon films</atitle><jtitle>Journal of crystal growth</jtitle><date>2014-09-15</date><risdate>2014</risdate><volume>402</volume><spage>99</spage><epage>103</epage><pages>99-103</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><coden>JCRGAE</coden><abstract>The effects of hydrogen dilution on aluminum-induced crystallization (AIC) of hydrogenated amorphous silicon (a-Si:H) films have been studied. The Raman spectra showed that the short-range order (SRO) and the intermedium-range order (IRO) of the as-deposited a-Si films increased with the increase of the H2 dilution from 0% to 20%. The optical microscope (OM) and X-ray diffraction (XRD) observation revealed that, compared to the a-Si:H film deposited in pure Ar, the a-Si:H films deposited with H2 dilution in the range of 3–8% possessed a lower crystallization rate while the a-Si:H films deposited with high H2 dilution in the range of 15–20% possessed a faster crystallization rate. It was found that majority of the hydrogen existed in the form of monohydride (SiH) bond in the a-Si:H films with H2 dilution ratio of 3–8%, the bonding energy of which was higher than that of Si–Si bond, leading to a lower crystallization rate of a-Si:H films. While the dihydride (SiH2) bond became dominant in the a-Si:H films with high H2 dilution of 15–20%, the bonding energy of which was lower than that of Si–Si bond, thus accelerating the crystallization rate. Therefore, it was illustrated that not the hydrogen concentration but the form of silicon–hydrogen bond determined the AIC process of a-Si:H films.
•Si–H2 bonds became dominant compared to Si–H bonds with the increase of H2 dilution.•Crystallization of a-Si:H films with 3–8% H2 dilution were lower than a-Si films.•Crystallization of a-Si:H films with 15–20% H2 dilution were faster than a-Si films.•The form of Si–H bond determined the AIC process of a-Si:H films.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2014.05.013</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0248 |
ispartof | Journal of crystal growth, 2014-09, Vol.402, p.99-103 |
issn | 0022-0248 1873-5002 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671617142 |
source | Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list) |
subjects | A1. Crystallization A3. Physical vapor deposition processes Aluminum Amorphous silicon Applied sciences B2. Semiconducting silicon B3. Solar cells Bonding Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Crystallization Deposition Deposition by sputtering Dilution Energy Equations of state, phase equilibria, and phase transitions Exact sciences and technology Hydrogen storage Materials science Methods of deposition of films and coatings film growth and epitaxy Natural energy Photovoltaic conversion Physics Short range order Solar cells. Photoelectrochemical cells Solar energy Solid-solid transitions Specific phase transitions |
title | Silicon–hydrogen bond effects on aluminum-induced crystallization of hydrogenated amorphous silicon films |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A54%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silicon%E2%80%93hydrogen%20bond%20effects%20on%20aluminum-induced%20crystallization%20of%20hydrogenated%20amorphous%20silicon%20films&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Zhai,%20Xiaoli&rft.date=2014-09-15&rft.volume=402&rft.spage=99&rft.epage=103&rft.pages=99-103&rft.issn=0022-0248&rft.eissn=1873-5002&rft.coden=JCRGAE&rft_id=info:doi/10.1016/j.jcrysgro.2014.05.013&rft_dat=%3Cproquest_cross%3E1671617142%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c441t-ca069a0589eb1ab67557b6c6ddfa2be1ad599ab46ba2c5d987a141e8f43c4eda3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671617142&rft_id=info:pmid/&rfr_iscdi=true |