Loading…

Silicon–hydrogen bond effects on aluminum-induced crystallization of hydrogenated amorphous silicon films

The effects of hydrogen dilution on aluminum-induced crystallization (AIC) of hydrogenated amorphous silicon (a-Si:H) films have been studied. The Raman spectra showed that the short-range order (SRO) and the intermedium-range order (IRO) of the as-deposited a-Si films increased with the increase of...

Full description

Saved in:
Bibliographic Details
Published in:Journal of crystal growth 2014-09, Vol.402, p.99-103
Main Authors: Zhai, Xiaoli, Tan, Ruiqin, Wang, Weiyan, Huang, Jinhua, Zhuang, Fuqiang, Dai, Shixun, Song, Weijie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c441t-ca069a0589eb1ab67557b6c6ddfa2be1ad599ab46ba2c5d987a141e8f43c4eda3
cites cdi_FETCH-LOGICAL-c441t-ca069a0589eb1ab67557b6c6ddfa2be1ad599ab46ba2c5d987a141e8f43c4eda3
container_end_page 103
container_issue
container_start_page 99
container_title Journal of crystal growth
container_volume 402
creator Zhai, Xiaoli
Tan, Ruiqin
Wang, Weiyan
Huang, Jinhua
Zhuang, Fuqiang
Dai, Shixun
Song, Weijie
description The effects of hydrogen dilution on aluminum-induced crystallization (AIC) of hydrogenated amorphous silicon (a-Si:H) films have been studied. The Raman spectra showed that the short-range order (SRO) and the intermedium-range order (IRO) of the as-deposited a-Si films increased with the increase of the H2 dilution from 0% to 20%. The optical microscope (OM) and X-ray diffraction (XRD) observation revealed that, compared to the a-Si:H film deposited in pure Ar, the a-Si:H films deposited with H2 dilution in the range of 3–8% possessed a lower crystallization rate while the a-Si:H films deposited with high H2 dilution in the range of 15–20% possessed a faster crystallization rate. It was found that majority of the hydrogen existed in the form of monohydride (SiH) bond in the a-Si:H films with H2 dilution ratio of 3–8%, the bonding energy of which was higher than that of Si–Si bond, leading to a lower crystallization rate of a-Si:H films. While the dihydride (SiH2) bond became dominant in the a-Si:H films with high H2 dilution of 15–20%, the bonding energy of which was lower than that of Si–Si bond, thus accelerating the crystallization rate. Therefore, it was illustrated that not the hydrogen concentration but the form of silicon–hydrogen bond determined the AIC process of a-Si:H films. •Si–H2 bonds became dominant compared to Si–H bonds with the increase of H2 dilution.•Crystallization of a-Si:H films with 3–8% H2 dilution were lower than a-Si films.•Crystallization of a-Si:H films with 15–20% H2 dilution were faster than a-Si films.•The form of Si–H bond determined the AIC process of a-Si:H films.
doi_str_mv 10.1016/j.jcrysgro.2014.05.013
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671617142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024814003595</els_id><sourcerecordid>1671617142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-ca069a0589eb1ab67557b6c6ddfa2be1ad599ab46ba2c5d987a141e8f43c4eda3</originalsourceid><addsrcrecordid>eNqFkLtOwzAUhi0EEqXwCigLEkuCnTpOsoEQN6kSAzBbJ74UF8cudoJUJt6BN-RJcFVgZbEHf__5fT6EjgkuCCbsbFksRVjHRfBFiQktcFVgMttBE9LUs7zCuNxFk3SWOS5ps48OYlxinJIET9DLg7FGePf18fm8lsEvlMs672SmtFZiiJl3GdixN27sc-PkKJTMNnUDWGveYTAJ8Dr7DcOQ3qH3YfXsx5jF7fRMG9vHQ7SnwUZ19HNP0dP11ePlbT6_v7m7vJjnglIy5AIwawFXTas6Ah2rq6rumGBSaig7RUBWbQsdZR2UopJtUwOhRDWazgRVEmZTdLqduwr-dVRx4L2JQlkLTqVPccLqtHxNaJlQtkVF8DEGpfkqmB7CmhPMN3b5kv_a5Ru7HFc82U3Bk58OiAKsDuCEiX_psmGMspYl7nzLqbTwm1GBR2GUSxZNSH659Oa_qm_r55jA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671617142</pqid></control><display><type>article</type><title>Silicon–hydrogen bond effects on aluminum-induced crystallization of hydrogenated amorphous silicon films</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Zhai, Xiaoli ; Tan, Ruiqin ; Wang, Weiyan ; Huang, Jinhua ; Zhuang, Fuqiang ; Dai, Shixun ; Song, Weijie</creator><creatorcontrib>Zhai, Xiaoli ; Tan, Ruiqin ; Wang, Weiyan ; Huang, Jinhua ; Zhuang, Fuqiang ; Dai, Shixun ; Song, Weijie</creatorcontrib><description>The effects of hydrogen dilution on aluminum-induced crystallization (AIC) of hydrogenated amorphous silicon (a-Si:H) films have been studied. The Raman spectra showed that the short-range order (SRO) and the intermedium-range order (IRO) of the as-deposited a-Si films increased with the increase of the H2 dilution from 0% to 20%. The optical microscope (OM) and X-ray diffraction (XRD) observation revealed that, compared to the a-Si:H film deposited in pure Ar, the a-Si:H films deposited with H2 dilution in the range of 3–8% possessed a lower crystallization rate while the a-Si:H films deposited with high H2 dilution in the range of 15–20% possessed a faster crystallization rate. It was found that majority of the hydrogen existed in the form of monohydride (SiH) bond in the a-Si:H films with H2 dilution ratio of 3–8%, the bonding energy of which was higher than that of Si–Si bond, leading to a lower crystallization rate of a-Si:H films. While the dihydride (SiH2) bond became dominant in the a-Si:H films with high H2 dilution of 15–20%, the bonding energy of which was lower than that of Si–Si bond, thus accelerating the crystallization rate. Therefore, it was illustrated that not the hydrogen concentration but the form of silicon–hydrogen bond determined the AIC process of a-Si:H films. •Si–H2 bonds became dominant compared to Si–H bonds with the increase of H2 dilution.•Crystallization of a-Si:H films with 3–8% H2 dilution were lower than a-Si films.•Crystallization of a-Si:H films with 15–20% H2 dilution were faster than a-Si films.•The form of Si–H bond determined the AIC process of a-Si:H films.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2014.05.013</identifier><identifier>CODEN: JCRGAE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. Crystallization ; A3. Physical vapor deposition processes ; Aluminum ; Amorphous silicon ; Applied sciences ; B2. Semiconducting silicon ; B3. Solar cells ; Bonding ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Crystallization ; Deposition ; Deposition by sputtering ; Dilution ; Energy ; Equations of state, phase equilibria, and phase transitions ; Exact sciences and technology ; Hydrogen storage ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; Natural energy ; Photovoltaic conversion ; Physics ; Short range order ; Solar cells. Photoelectrochemical cells ; Solar energy ; Solid-solid transitions ; Specific phase transitions</subject><ispartof>Journal of crystal growth, 2014-09, Vol.402, p.99-103</ispartof><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-ca069a0589eb1ab67557b6c6ddfa2be1ad599ab46ba2c5d987a141e8f43c4eda3</citedby><cites>FETCH-LOGICAL-c441t-ca069a0589eb1ab67557b6c6ddfa2be1ad599ab46ba2c5d987a141e8f43c4eda3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28664696$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhai, Xiaoli</creatorcontrib><creatorcontrib>Tan, Ruiqin</creatorcontrib><creatorcontrib>Wang, Weiyan</creatorcontrib><creatorcontrib>Huang, Jinhua</creatorcontrib><creatorcontrib>Zhuang, Fuqiang</creatorcontrib><creatorcontrib>Dai, Shixun</creatorcontrib><creatorcontrib>Song, Weijie</creatorcontrib><title>Silicon–hydrogen bond effects on aluminum-induced crystallization of hydrogenated amorphous silicon films</title><title>Journal of crystal growth</title><description>The effects of hydrogen dilution on aluminum-induced crystallization (AIC) of hydrogenated amorphous silicon (a-Si:H) films have been studied. The Raman spectra showed that the short-range order (SRO) and the intermedium-range order (IRO) of the as-deposited a-Si films increased with the increase of the H2 dilution from 0% to 20%. The optical microscope (OM) and X-ray diffraction (XRD) observation revealed that, compared to the a-Si:H film deposited in pure Ar, the a-Si:H films deposited with H2 dilution in the range of 3–8% possessed a lower crystallization rate while the a-Si:H films deposited with high H2 dilution in the range of 15–20% possessed a faster crystallization rate. It was found that majority of the hydrogen existed in the form of monohydride (SiH) bond in the a-Si:H films with H2 dilution ratio of 3–8%, the bonding energy of which was higher than that of Si–Si bond, leading to a lower crystallization rate of a-Si:H films. While the dihydride (SiH2) bond became dominant in the a-Si:H films with high H2 dilution of 15–20%, the bonding energy of which was lower than that of Si–Si bond, thus accelerating the crystallization rate. Therefore, it was illustrated that not the hydrogen concentration but the form of silicon–hydrogen bond determined the AIC process of a-Si:H films. •Si–H2 bonds became dominant compared to Si–H bonds with the increase of H2 dilution.•Crystallization of a-Si:H films with 3–8% H2 dilution were lower than a-Si films.•Crystallization of a-Si:H films with 15–20% H2 dilution were faster than a-Si films.•The form of Si–H bond determined the AIC process of a-Si:H films.</description><subject>A1. Crystallization</subject><subject>A3. Physical vapor deposition processes</subject><subject>Aluminum</subject><subject>Amorphous silicon</subject><subject>Applied sciences</subject><subject>B2. Semiconducting silicon</subject><subject>B3. Solar cells</subject><subject>Bonding</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystallization</subject><subject>Deposition</subject><subject>Deposition by sputtering</subject><subject>Dilution</subject><subject>Energy</subject><subject>Equations of state, phase equilibria, and phase transitions</subject><subject>Exact sciences and technology</subject><subject>Hydrogen storage</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Natural energy</subject><subject>Photovoltaic conversion</subject><subject>Physics</subject><subject>Short range order</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><subject>Solid-solid transitions</subject><subject>Specific phase transitions</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOwzAUhi0EEqXwCigLEkuCnTpOsoEQN6kSAzBbJ74UF8cudoJUJt6BN-RJcFVgZbEHf__5fT6EjgkuCCbsbFksRVjHRfBFiQktcFVgMttBE9LUs7zCuNxFk3SWOS5ps48OYlxinJIET9DLg7FGePf18fm8lsEvlMs672SmtFZiiJl3GdixN27sc-PkKJTMNnUDWGveYTAJ8Dr7DcOQ3qH3YfXsx5jF7fRMG9vHQ7SnwUZ19HNP0dP11ePlbT6_v7m7vJjnglIy5AIwawFXTas6Ah2rq6rumGBSaig7RUBWbQsdZR2UopJtUwOhRDWazgRVEmZTdLqduwr-dVRx4L2JQlkLTqVPccLqtHxNaJlQtkVF8DEGpfkqmB7CmhPMN3b5kv_a5Ru7HFc82U3Bk58OiAKsDuCEiX_psmGMspYl7nzLqbTwm1GBR2GUSxZNSH659Oa_qm_r55jA</recordid><startdate>20140915</startdate><enddate>20140915</enddate><creator>Zhai, Xiaoli</creator><creator>Tan, Ruiqin</creator><creator>Wang, Weiyan</creator><creator>Huang, Jinhua</creator><creator>Zhuang, Fuqiang</creator><creator>Dai, Shixun</creator><creator>Song, Weijie</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140915</creationdate><title>Silicon–hydrogen bond effects on aluminum-induced crystallization of hydrogenated amorphous silicon films</title><author>Zhai, Xiaoli ; Tan, Ruiqin ; Wang, Weiyan ; Huang, Jinhua ; Zhuang, Fuqiang ; Dai, Shixun ; Song, Weijie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-ca069a0589eb1ab67557b6c6ddfa2be1ad599ab46ba2c5d987a141e8f43c4eda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>A1. Crystallization</topic><topic>A3. Physical vapor deposition processes</topic><topic>Aluminum</topic><topic>Amorphous silicon</topic><topic>Applied sciences</topic><topic>B2. Semiconducting silicon</topic><topic>B3. Solar cells</topic><topic>Bonding</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystallization</topic><topic>Deposition</topic><topic>Deposition by sputtering</topic><topic>Dilution</topic><topic>Energy</topic><topic>Equations of state, phase equilibria, and phase transitions</topic><topic>Exact sciences and technology</topic><topic>Hydrogen storage</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Natural energy</topic><topic>Photovoltaic conversion</topic><topic>Physics</topic><topic>Short range order</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><topic>Solid-solid transitions</topic><topic>Specific phase transitions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhai, Xiaoli</creatorcontrib><creatorcontrib>Tan, Ruiqin</creatorcontrib><creatorcontrib>Wang, Weiyan</creatorcontrib><creatorcontrib>Huang, Jinhua</creatorcontrib><creatorcontrib>Zhuang, Fuqiang</creatorcontrib><creatorcontrib>Dai, Shixun</creatorcontrib><creatorcontrib>Song, Weijie</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhai, Xiaoli</au><au>Tan, Ruiqin</au><au>Wang, Weiyan</au><au>Huang, Jinhua</au><au>Zhuang, Fuqiang</au><au>Dai, Shixun</au><au>Song, Weijie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silicon–hydrogen bond effects on aluminum-induced crystallization of hydrogenated amorphous silicon films</atitle><jtitle>Journal of crystal growth</jtitle><date>2014-09-15</date><risdate>2014</risdate><volume>402</volume><spage>99</spage><epage>103</epage><pages>99-103</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><coden>JCRGAE</coden><abstract>The effects of hydrogen dilution on aluminum-induced crystallization (AIC) of hydrogenated amorphous silicon (a-Si:H) films have been studied. The Raman spectra showed that the short-range order (SRO) and the intermedium-range order (IRO) of the as-deposited a-Si films increased with the increase of the H2 dilution from 0% to 20%. The optical microscope (OM) and X-ray diffraction (XRD) observation revealed that, compared to the a-Si:H film deposited in pure Ar, the a-Si:H films deposited with H2 dilution in the range of 3–8% possessed a lower crystallization rate while the a-Si:H films deposited with high H2 dilution in the range of 15–20% possessed a faster crystallization rate. It was found that majority of the hydrogen existed in the form of monohydride (SiH) bond in the a-Si:H films with H2 dilution ratio of 3–8%, the bonding energy of which was higher than that of Si–Si bond, leading to a lower crystallization rate of a-Si:H films. While the dihydride (SiH2) bond became dominant in the a-Si:H films with high H2 dilution of 15–20%, the bonding energy of which was lower than that of Si–Si bond, thus accelerating the crystallization rate. Therefore, it was illustrated that not the hydrogen concentration but the form of silicon–hydrogen bond determined the AIC process of a-Si:H films. •Si–H2 bonds became dominant compared to Si–H bonds with the increase of H2 dilution.•Crystallization of a-Si:H films with 3–8% H2 dilution were lower than a-Si films.•Crystallization of a-Si:H films with 15–20% H2 dilution were faster than a-Si films.•The form of Si–H bond determined the AIC process of a-Si:H films.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2014.05.013</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-0248
ispartof Journal of crystal growth, 2014-09, Vol.402, p.99-103
issn 0022-0248
1873-5002
language eng
recordid cdi_proquest_miscellaneous_1671617142
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects A1. Crystallization
A3. Physical vapor deposition processes
Aluminum
Amorphous silicon
Applied sciences
B2. Semiconducting silicon
B3. Solar cells
Bonding
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Crystallization
Deposition
Deposition by sputtering
Dilution
Energy
Equations of state, phase equilibria, and phase transitions
Exact sciences and technology
Hydrogen storage
Materials science
Methods of deposition of films and coatings
film growth and epitaxy
Natural energy
Photovoltaic conversion
Physics
Short range order
Solar cells. Photoelectrochemical cells
Solar energy
Solid-solid transitions
Specific phase transitions
title Silicon–hydrogen bond effects on aluminum-induced crystallization of hydrogenated amorphous silicon films
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A54%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silicon%E2%80%93hydrogen%20bond%20effects%20on%20aluminum-induced%20crystallization%20of%20hydrogenated%20amorphous%20silicon%20films&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Zhai,%20Xiaoli&rft.date=2014-09-15&rft.volume=402&rft.spage=99&rft.epage=103&rft.pages=99-103&rft.issn=0022-0248&rft.eissn=1873-5002&rft.coden=JCRGAE&rft_id=info:doi/10.1016/j.jcrysgro.2014.05.013&rft_dat=%3Cproquest_cross%3E1671617142%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c441t-ca069a0589eb1ab67557b6c6ddfa2be1ad599ab46ba2c5d987a141e8f43c4eda3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671617142&rft_id=info:pmid/&rfr_iscdi=true