Loading…

Identification of Domains of Poly(ADP-ribose) Polymerase for Protein Binding and Self-association (∗)

Cellular proteins extracted from normal and cancer cells bind polymerizing ADP-ribose transferase (pADPRT) on nitrocellulose membrane transblots. Histones at 1 mg/ml concentration completely prevent the binding of pADPRT to cellular proteins, indicating that the binding of histones to pADPRT sites c...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1995-02, Vol.270 (7), p.3370-3377
Main Authors: Buki, Kalman G., Bauer, Pal I., Hakam, Alaeddin, Kun, Ernest
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c437t-be5db5f820c7a3ba4a63bca4fbb4b18eab98268e971f8e143dcd5334c01fbfdb3
cites cdi_FETCH-LOGICAL-c437t-be5db5f820c7a3ba4a63bca4fbb4b18eab98268e971f8e143dcd5334c01fbfdb3
container_end_page 3377
container_issue 7
container_start_page 3370
container_title The Journal of biological chemistry
container_volume 270
creator Buki, Kalman G.
Bauer, Pal I.
Hakam, Alaeddin
Kun, Ernest
description Cellular proteins extracted from normal and cancer cells bind polymerizing ADP-ribose transferase (pADPRT) on nitrocellulose membrane transblots. Histones at 1 mg/ml concentration completely prevent the binding of pADPRT to cellular proteins, indicating that the binding of histones to pADPRT sites competitively blocks the association of pADPRT to proteins other than histones. The direct binding of pADPRT to histones is shown by cross-linking with glutaraldehyde. The COOH-terminal basic histone H1 tail binds to the basic polypeptide domain of pADPRT. The basic domain present in the NH2-terminal part of core histones is the probable common structural feature of all core histones that accounts for their binding to pADPRT. Two polypeptide domains of pADPRT were identified, by way of CNBr fragments, to bind histones. These two domains are located within the 64-kDa fragment of pADPRT and are contiguous with the polypeptide domains that were shown to participate in self-association of pADPRT, ending at the 606th amino acid residue. The polypeptide domains of pADPRT which participate in DNA binding are thus shown to associate also with other proteins. Intact pADPRT binds to both the zinc-free or zinc-reconstituted basic polypeptide fragments of pADPRT. Histones activate auto-poly(ADP)-ribosylation of pADPRT by increasing the number of short oligomers on pADPRT. This reaction is also dependent in a biphasic manner on the concentration of pADPRT. Histones in solution are only marginally poly(ADP)-ribosylated but are good polymer acceptors when incorporated into artificial nucleosome structures.
doi_str_mv 10.1074/jbc.270.7.3370
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16731193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925818829350</els_id><sourcerecordid>16731193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-be5db5f820c7a3ba4a63bca4fbb4b18eab98268e971f8e143dcd5334c01fbfdb3</originalsourceid><addsrcrecordid>eNp1kM9q3DAQxkVpSDdJr70VTA8lOdiVLHklH9P8ayDQhbTQm9Cf0a6CLSWSNyFvkDfI--VJ4q2XQA-dywzzffMN_BD6RHBFMGffbrSpao4rXlHK8Ts0I1jQkjbkz3s0w7gmZVs34gPay_kGj8Vasot2uWhqVrMZWl5aCIN33qjBx1BEV5zGXvmQN-Mido-Hx6eLMnkdMxz9XfSQVIbCxVQsUhzAh-K7D9aHZaGCLa6hc6XKORo_RR6-PD0fHaAdp7oMH7d9H_0-P_t18qO8-nlxeXJ8VRpG-VBqaKxunKix4YpqxdScaqOY05ppIkDpVtRzAS0nTgBh1BrbUMoMJk47q-k--jrl3qZ4t4Y8yN5nA12nAsR1lmTOKSEtHY3VZDQp5pzAydvke5UeJcFyQ1aOZOVIVnK5ITsefN4mr3UP9s2-RTnqXyZ95ZerB59Aah_NCvp_Q8RkgpHBvYcks_EQDNjxwAzSRv-__69PupSE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16731193</pqid></control><display><type>article</type><title>Identification of Domains of Poly(ADP-ribose) Polymerase for Protein Binding and Self-association (∗)</title><source>Elsevier ScienceDirect Journals</source><creator>Buki, Kalman G. ; Bauer, Pal I. ; Hakam, Alaeddin ; Kun, Ernest</creator><creatorcontrib>Buki, Kalman G. ; Bauer, Pal I. ; Hakam, Alaeddin ; Kun, Ernest</creatorcontrib><description>Cellular proteins extracted from normal and cancer cells bind polymerizing ADP-ribose transferase (pADPRT) on nitrocellulose membrane transblots. Histones at 1 mg/ml concentration completely prevent the binding of pADPRT to cellular proteins, indicating that the binding of histones to pADPRT sites competitively blocks the association of pADPRT to proteins other than histones. The direct binding of pADPRT to histones is shown by cross-linking with glutaraldehyde. The COOH-terminal basic histone H1 tail binds to the basic polypeptide domain of pADPRT. The basic domain present in the NH2-terminal part of core histones is the probable common structural feature of all core histones that accounts for their binding to pADPRT. Two polypeptide domains of pADPRT were identified, by way of CNBr fragments, to bind histones. These two domains are located within the 64-kDa fragment of pADPRT and are contiguous with the polypeptide domains that were shown to participate in self-association of pADPRT, ending at the 606th amino acid residue. The polypeptide domains of pADPRT which participate in DNA binding are thus shown to associate also with other proteins. Intact pADPRT binds to both the zinc-free or zinc-reconstituted basic polypeptide fragments of pADPRT. Histones activate auto-poly(ADP)-ribosylation of pADPRT by increasing the number of short oligomers on pADPRT. This reaction is also dependent in a biphasic manner on the concentration of pADPRT. Histones in solution are only marginally poly(ADP)-ribosylated but are good polymer acceptors when incorporated into artificial nucleosome structures.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.270.7.3370</identifier><identifier>PMID: 7852424</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>3T3 Cells ; Adrenal Gland Neoplasms ; Animals ; Binding Sites ; Cattle ; CHO Cells ; Cricetinae ; Cross-Linking Reagents ; Cyanogen Bromide ; Endopeptidases ; Glutaral ; Histones - isolation &amp; purification ; Histones - metabolism ; Macromolecular Substances ; Mice ; Nucleosomes - metabolism ; PC12 Cells ; Peptide Fragments - chemistry ; Peptide Fragments - isolation &amp; purification ; Peptide Fragments - metabolism ; Pheochromocytoma ; Poly Adenosine Diphosphate Ribose - biosynthesis ; Poly(ADP-ribose) Polymerases - chemistry ; Poly(ADP-ribose) Polymerases - isolation &amp; purification ; Poly(ADP-ribose) Polymerases - metabolism ; Rats ; Thymus Gland - enzymology ; Zinc - metabolism</subject><ispartof>The Journal of biological chemistry, 1995-02, Vol.270 (7), p.3370-3377</ispartof><rights>1995 © 1995 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-be5db5f820c7a3ba4a63bca4fbb4b18eab98268e971f8e143dcd5334c01fbfdb3</citedby><cites>FETCH-LOGICAL-c437t-be5db5f820c7a3ba4a63bca4fbb4b18eab98268e971f8e143dcd5334c01fbfdb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925818829350$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7852424$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Buki, Kalman G.</creatorcontrib><creatorcontrib>Bauer, Pal I.</creatorcontrib><creatorcontrib>Hakam, Alaeddin</creatorcontrib><creatorcontrib>Kun, Ernest</creatorcontrib><title>Identification of Domains of Poly(ADP-ribose) Polymerase for Protein Binding and Self-association (∗)</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Cellular proteins extracted from normal and cancer cells bind polymerizing ADP-ribose transferase (pADPRT) on nitrocellulose membrane transblots. Histones at 1 mg/ml concentration completely prevent the binding of pADPRT to cellular proteins, indicating that the binding of histones to pADPRT sites competitively blocks the association of pADPRT to proteins other than histones. The direct binding of pADPRT to histones is shown by cross-linking with glutaraldehyde. The COOH-terminal basic histone H1 tail binds to the basic polypeptide domain of pADPRT. The basic domain present in the NH2-terminal part of core histones is the probable common structural feature of all core histones that accounts for their binding to pADPRT. Two polypeptide domains of pADPRT were identified, by way of CNBr fragments, to bind histones. These two domains are located within the 64-kDa fragment of pADPRT and are contiguous with the polypeptide domains that were shown to participate in self-association of pADPRT, ending at the 606th amino acid residue. The polypeptide domains of pADPRT which participate in DNA binding are thus shown to associate also with other proteins. Intact pADPRT binds to both the zinc-free or zinc-reconstituted basic polypeptide fragments of pADPRT. Histones activate auto-poly(ADP)-ribosylation of pADPRT by increasing the number of short oligomers on pADPRT. This reaction is also dependent in a biphasic manner on the concentration of pADPRT. Histones in solution are only marginally poly(ADP)-ribosylated but are good polymer acceptors when incorporated into artificial nucleosome structures.</description><subject>3T3 Cells</subject><subject>Adrenal Gland Neoplasms</subject><subject>Animals</subject><subject>Binding Sites</subject><subject>Cattle</subject><subject>CHO Cells</subject><subject>Cricetinae</subject><subject>Cross-Linking Reagents</subject><subject>Cyanogen Bromide</subject><subject>Endopeptidases</subject><subject>Glutaral</subject><subject>Histones - isolation &amp; purification</subject><subject>Histones - metabolism</subject><subject>Macromolecular Substances</subject><subject>Mice</subject><subject>Nucleosomes - metabolism</subject><subject>PC12 Cells</subject><subject>Peptide Fragments - chemistry</subject><subject>Peptide Fragments - isolation &amp; purification</subject><subject>Peptide Fragments - metabolism</subject><subject>Pheochromocytoma</subject><subject>Poly Adenosine Diphosphate Ribose - biosynthesis</subject><subject>Poly(ADP-ribose) Polymerases - chemistry</subject><subject>Poly(ADP-ribose) Polymerases - isolation &amp; purification</subject><subject>Poly(ADP-ribose) Polymerases - metabolism</subject><subject>Rats</subject><subject>Thymus Gland - enzymology</subject><subject>Zinc - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNp1kM9q3DAQxkVpSDdJr70VTA8lOdiVLHklH9P8ayDQhbTQm9Cf0a6CLSWSNyFvkDfI--VJ4q2XQA-dywzzffMN_BD6RHBFMGffbrSpao4rXlHK8Ts0I1jQkjbkz3s0w7gmZVs34gPay_kGj8Vasot2uWhqVrMZWl5aCIN33qjBx1BEV5zGXvmQN-Mido-Hx6eLMnkdMxz9XfSQVIbCxVQsUhzAh-K7D9aHZaGCLa6hc6XKORo_RR6-PD0fHaAdp7oMH7d9H_0-P_t18qO8-nlxeXJ8VRpG-VBqaKxunKix4YpqxdScaqOY05ppIkDpVtRzAS0nTgBh1BrbUMoMJk47q-k--jrl3qZ4t4Y8yN5nA12nAsR1lmTOKSEtHY3VZDQp5pzAydvke5UeJcFyQ1aOZOVIVnK5ITsefN4mr3UP9s2-RTnqXyZ95ZerB59Aah_NCvp_Q8RkgpHBvYcks_EQDNjxwAzSRv-__69PupSE</recordid><startdate>19950217</startdate><enddate>19950217</enddate><creator>Buki, Kalman G.</creator><creator>Bauer, Pal I.</creator><creator>Hakam, Alaeddin</creator><creator>Kun, Ernest</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope></search><sort><creationdate>19950217</creationdate><title>Identification of Domains of Poly(ADP-ribose) Polymerase for Protein Binding and Self-association (∗)</title><author>Buki, Kalman G. ; Bauer, Pal I. ; Hakam, Alaeddin ; Kun, Ernest</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-be5db5f820c7a3ba4a63bca4fbb4b18eab98268e971f8e143dcd5334c01fbfdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>3T3 Cells</topic><topic>Adrenal Gland Neoplasms</topic><topic>Animals</topic><topic>Binding Sites</topic><topic>Cattle</topic><topic>CHO Cells</topic><topic>Cricetinae</topic><topic>Cross-Linking Reagents</topic><topic>Cyanogen Bromide</topic><topic>Endopeptidases</topic><topic>Glutaral</topic><topic>Histones - isolation &amp; purification</topic><topic>Histones - metabolism</topic><topic>Macromolecular Substances</topic><topic>Mice</topic><topic>Nucleosomes - metabolism</topic><topic>PC12 Cells</topic><topic>Peptide Fragments - chemistry</topic><topic>Peptide Fragments - isolation &amp; purification</topic><topic>Peptide Fragments - metabolism</topic><topic>Pheochromocytoma</topic><topic>Poly Adenosine Diphosphate Ribose - biosynthesis</topic><topic>Poly(ADP-ribose) Polymerases - chemistry</topic><topic>Poly(ADP-ribose) Polymerases - isolation &amp; purification</topic><topic>Poly(ADP-ribose) Polymerases - metabolism</topic><topic>Rats</topic><topic>Thymus Gland - enzymology</topic><topic>Zinc - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buki, Kalman G.</creatorcontrib><creatorcontrib>Bauer, Pal I.</creatorcontrib><creatorcontrib>Hakam, Alaeddin</creatorcontrib><creatorcontrib>Kun, Ernest</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buki, Kalman G.</au><au>Bauer, Pal I.</au><au>Hakam, Alaeddin</au><au>Kun, Ernest</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of Domains of Poly(ADP-ribose) Polymerase for Protein Binding and Self-association (∗)</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>1995-02-17</date><risdate>1995</risdate><volume>270</volume><issue>7</issue><spage>3370</spage><epage>3377</epage><pages>3370-3377</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Cellular proteins extracted from normal and cancer cells bind polymerizing ADP-ribose transferase (pADPRT) on nitrocellulose membrane transblots. Histones at 1 mg/ml concentration completely prevent the binding of pADPRT to cellular proteins, indicating that the binding of histones to pADPRT sites competitively blocks the association of pADPRT to proteins other than histones. The direct binding of pADPRT to histones is shown by cross-linking with glutaraldehyde. The COOH-terminal basic histone H1 tail binds to the basic polypeptide domain of pADPRT. The basic domain present in the NH2-terminal part of core histones is the probable common structural feature of all core histones that accounts for their binding to pADPRT. Two polypeptide domains of pADPRT were identified, by way of CNBr fragments, to bind histones. These two domains are located within the 64-kDa fragment of pADPRT and are contiguous with the polypeptide domains that were shown to participate in self-association of pADPRT, ending at the 606th amino acid residue. The polypeptide domains of pADPRT which participate in DNA binding are thus shown to associate also with other proteins. Intact pADPRT binds to both the zinc-free or zinc-reconstituted basic polypeptide fragments of pADPRT. Histones activate auto-poly(ADP)-ribosylation of pADPRT by increasing the number of short oligomers on pADPRT. This reaction is also dependent in a biphasic manner on the concentration of pADPRT. Histones in solution are only marginally poly(ADP)-ribosylated but are good polymer acceptors when incorporated into artificial nucleosome structures.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>7852424</pmid><doi>10.1074/jbc.270.7.3370</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 1995-02, Vol.270 (7), p.3370-3377
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_16731193
source Elsevier ScienceDirect Journals
subjects 3T3 Cells
Adrenal Gland Neoplasms
Animals
Binding Sites
Cattle
CHO Cells
Cricetinae
Cross-Linking Reagents
Cyanogen Bromide
Endopeptidases
Glutaral
Histones - isolation & purification
Histones - metabolism
Macromolecular Substances
Mice
Nucleosomes - metabolism
PC12 Cells
Peptide Fragments - chemistry
Peptide Fragments - isolation & purification
Peptide Fragments - metabolism
Pheochromocytoma
Poly Adenosine Diphosphate Ribose - biosynthesis
Poly(ADP-ribose) Polymerases - chemistry
Poly(ADP-ribose) Polymerases - isolation & purification
Poly(ADP-ribose) Polymerases - metabolism
Rats
Thymus Gland - enzymology
Zinc - metabolism
title Identification of Domains of Poly(ADP-ribose) Polymerase for Protein Binding and Self-association (∗)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A32%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20Domains%20of%20Poly(ADP-ribose)%20Polymerase%20for%20Protein%20Binding%20and%20Self-association%20(%E2%88%97)&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Buki,%20Kalman%20G.&rft.date=1995-02-17&rft.volume=270&rft.issue=7&rft.spage=3370&rft.epage=3377&rft.pages=3370-3377&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.270.7.3370&rft_dat=%3Cproquest_cross%3E16731193%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c437t-be5db5f820c7a3ba4a63bca4fbb4b18eab98268e971f8e143dcd5334c01fbfdb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=16731193&rft_id=info:pmid/7852424&rfr_iscdi=true