Loading…

Metabolomics-based approach for assessing the toxicity mechanisms of dibutyl phthalate to abalone (Haliotis diversicolor supertexta)

Dibutyl phthalate (DBP) is a ubiquitous contaminant in the marine environment, and relatively little is known about the toxicological mechanisms of this compound at the metabolite level. In this study, marine gastropods (abalone) were exposed to DBP at environmentally relevant concentrations (2, 10,...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science and pollution research international 2015-04, Vol.22 (7), p.5092-5099
Main Authors: Zhou, Jin, Chen, Baiyang, Cai, Zhonghua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Dibutyl phthalate (DBP) is a ubiquitous contaminant in the marine environment, and relatively little is known about the toxicological mechanisms of this compound at the metabolite level. In this study, marine gastropods (abalone) were exposed to DBP at environmentally relevant concentrations (2, 10, and 50 μg/L) for 30 days. The plasma metabolite profiles were determined at the 5th, 15th, and 30th. The major metabolite changes corresponding to DBP exposure were related to osmotic regulation, energy metabolism, and environmental stress, and the effects displayed a dose-dependent pattern. The most obvious change was the increase in the levels of intracellular metabolites (betaine, dimethylglycine, homarine, glutamine, and lactate) and tricarboxylic acid cycle intermediates. The results revealed that DBP may lead to abalone oxidative stress, lipid metabolism dysfunction, energy metabolism disturbance, and osmoregulation imbalance. These results would be helpful in better understanding the mechanisms of abalone response to DBP stress at the system level.
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-014-3859-7