Loading…

Optimization of volatile fatty acids and hydrogen production from Saccharina japonica: acidogenesis and molecular analysis of the resulting microbial communities

Response surface methodology (RSM) was used to optimize the production of volatile fatty acids (VFAs) and hydrogen from mixed anaerobic cultures of Saccharina japonica with respect to two independent variables: methanogenic inhibitor concentration and temperature. The effects of four methanogenic in...

Full description

Saved in:
Bibliographic Details
Published in:Applied microbiology and biotechnology 2015-04, Vol.99 (7), p.3327-3337
Main Authors: Jung, Kwonsu, Kim, Woong, Park, Gwon Woo, Seo, Charles, Chang, Ho Nam, Kim, Yeu-Chun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c536t-fb4d2a54e75fca4c70cd4d8dbce1cc0e06f03ed8be9eae7e03df11604a7374ba3
cites cdi_FETCH-LOGICAL-c536t-fb4d2a54e75fca4c70cd4d8dbce1cc0e06f03ed8be9eae7e03df11604a7374ba3
container_end_page 3337
container_issue 7
container_start_page 3327
container_title Applied microbiology and biotechnology
container_volume 99
creator Jung, Kwonsu
Kim, Woong
Park, Gwon Woo
Seo, Charles
Chang, Ho Nam
Kim, Yeu-Chun
description Response surface methodology (RSM) was used to optimize the production of volatile fatty acids (VFAs) and hydrogen from mixed anaerobic cultures of Saccharina japonica with respect to two independent variables: methanogenic inhibitor concentration and temperature. The effects of four methanogenic inhibitors on acidogenic processes were tested, and qualitative microbial analyses were carried out. Escherichia, Acinetobacter, and Clostridium were the most predominant genera in samples treated with chloroform (CHCl₃), iodoform (CHI₃), 2-bromoethanesulfonate (BES), or β-cyclodextrin (β-CD), respectively. RSM showed that the production of VFAs reached a peak of 12.5 g/L at 38.6 °C in the presence of 7.4 g/L β-CD; these were the conditions under which hydrogen production was also nearly maximal. The quantitative polymerase chain reaction (qPCR) showed that shifts in the bacterial community population correlated with the concentrations of β-CD indicating that this compound effectively inhibited methanogens.
doi_str_mv 10.1007/s00253-015-6419-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1673383796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3628433711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-fb4d2a54e75fca4c70cd4d8dbce1cc0e06f03ed8be9eae7e03df11604a7374ba3</originalsourceid><addsrcrecordid>eNqNks1u1DAUhS0EoqXwAGzAEhs2Af_FSdihij-pUhela-vGvpnxyIkHO6k0vA1vimdSEGKBWNm-_s65uj4m5DlnbzhjzdvMmKhlxXhdacW7Sjwg51xJUTHN1UNyznhTV03dtWfkSc47xrhotX5MzkStNW-5PCc_rvezH_13mH2caBzoXQxlH5AOMM8HCta7TGFydHtwKW5wovsU3WJP_JDiSG_A2i0kPwHdwT5O3sK7k-5IY_arfIwB7RIglROEw7Fcus1bpAnzEmY_bejobYq9h0BtHMdl8rPH_JQ8GiBkfHa_XpDbjx--Xn6urq4_fbl8f1XZWuq5GnrlBNQKm3qwoGzDrFOudb1Fbi1Dpgcm0bU9dgjYIJNu4FwzBY1sVA_ygrxefct83xbMsxl9thgCTBiXbLhupGxl0-n_QHXNeacEK-irv9BdXFJ5gROlZNdq0RWKr1SZP-eEg9knP0I6GM7MMWqzRm1K1OYYtRFF8-LeeelHdL8Vv7ItgFiBXK6mDaY_Wv_D9eUqGiAa2CSfze2NKED5PKruGJM_ARG_wZ4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1664398629</pqid></control><display><type>article</type><title>Optimization of volatile fatty acids and hydrogen production from Saccharina japonica: acidogenesis and molecular analysis of the resulting microbial communities</title><source>ABI/INFORM Global (ProQuest)</source><source>Springer Link</source><creator>Jung, Kwonsu ; Kim, Woong ; Park, Gwon Woo ; Seo, Charles ; Chang, Ho Nam ; Kim, Yeu-Chun</creator><creatorcontrib>Jung, Kwonsu ; Kim, Woong ; Park, Gwon Woo ; Seo, Charles ; Chang, Ho Nam ; Kim, Yeu-Chun</creatorcontrib><description>Response surface methodology (RSM) was used to optimize the production of volatile fatty acids (VFAs) and hydrogen from mixed anaerobic cultures of Saccharina japonica with respect to two independent variables: methanogenic inhibitor concentration and temperature. The effects of four methanogenic inhibitors on acidogenic processes were tested, and qualitative microbial analyses were carried out. Escherichia, Acinetobacter, and Clostridium were the most predominant genera in samples treated with chloroform (CHCl₃), iodoform (CHI₃), 2-bromoethanesulfonate (BES), or β-cyclodextrin (β-CD), respectively. RSM showed that the production of VFAs reached a peak of 12.5 g/L at 38.6 °C in the presence of 7.4 g/L β-CD; these were the conditions under which hydrogen production was also nearly maximal. The quantitative polymerase chain reaction (qPCR) showed that shifts in the bacterial community population correlated with the concentrations of β-CD indicating that this compound effectively inhibited methanogens.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-015-6419-2</identifier><identifier>PMID: 25661813</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Acinetobacter ; Algae ; Alkanesulfonic Acids - pharmacology ; Alternative energy sources ; Anaerobiosis ; Analysis ; bacterial communities ; beta-cyclodextrin ; beta-Cyclodextrins - pharmacology ; Biodiesel fuels ; Bioenergy and Biofuels ; Biofuels ; Biomedical and Life Sciences ; Biosynthesis ; Biotechnology ; Biotechnology - instrumentation ; Biotechnology - methods ; Chemical oxygen demand ; Chloroform ; Chloroform - pharmacology ; Clostridium ; Escherichia ; Fatty acids ; Fatty Acids, Volatile - biosynthesis ; Hydrocarbons, Iodinated - pharmacology ; Hydrogen ; Hydrogen - metabolism ; Hydrogen production ; Life Sciences ; Methane - metabolism ; methanogens ; Microbial activity ; Microbial Consortia - drug effects ; Microbial Consortia - genetics ; Microbial Genetics and Genomics ; Microbiology ; Microorganisms ; Phaeophyceae - cytology ; Phaeophyceae - drug effects ; Phaeophyceae - metabolism ; Polymerase chain reaction ; quantitative polymerase chain reaction ; response surface methodology ; RNA, Ribosomal, 16S ; Saccharina japonica ; Studies ; Temperature ; volatile fatty acids</subject><ispartof>Applied microbiology and biotechnology, 2015-04, Vol.99 (7), p.3327-3337</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-fb4d2a54e75fca4c70cd4d8dbce1cc0e06f03ed8be9eae7e03df11604a7374ba3</citedby><cites>FETCH-LOGICAL-c536t-fb4d2a54e75fca4c70cd4d8dbce1cc0e06f03ed8be9eae7e03df11604a7374ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1664398629/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1664398629?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11687,27923,27924,36059,36060,44362,74666</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25661813$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jung, Kwonsu</creatorcontrib><creatorcontrib>Kim, Woong</creatorcontrib><creatorcontrib>Park, Gwon Woo</creatorcontrib><creatorcontrib>Seo, Charles</creatorcontrib><creatorcontrib>Chang, Ho Nam</creatorcontrib><creatorcontrib>Kim, Yeu-Chun</creatorcontrib><title>Optimization of volatile fatty acids and hydrogen production from Saccharina japonica: acidogenesis and molecular analysis of the resulting microbial communities</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Response surface methodology (RSM) was used to optimize the production of volatile fatty acids (VFAs) and hydrogen from mixed anaerobic cultures of Saccharina japonica with respect to two independent variables: methanogenic inhibitor concentration and temperature. The effects of four methanogenic inhibitors on acidogenic processes were tested, and qualitative microbial analyses were carried out. Escherichia, Acinetobacter, and Clostridium were the most predominant genera in samples treated with chloroform (CHCl₃), iodoform (CHI₃), 2-bromoethanesulfonate (BES), or β-cyclodextrin (β-CD), respectively. RSM showed that the production of VFAs reached a peak of 12.5 g/L at 38.6 °C in the presence of 7.4 g/L β-CD; these were the conditions under which hydrogen production was also nearly maximal. The quantitative polymerase chain reaction (qPCR) showed that shifts in the bacterial community population correlated with the concentrations of β-CD indicating that this compound effectively inhibited methanogens.</description><subject>Acinetobacter</subject><subject>Algae</subject><subject>Alkanesulfonic Acids - pharmacology</subject><subject>Alternative energy sources</subject><subject>Anaerobiosis</subject><subject>Analysis</subject><subject>bacterial communities</subject><subject>beta-cyclodextrin</subject><subject>beta-Cyclodextrins - pharmacology</subject><subject>Biodiesel fuels</subject><subject>Bioenergy and Biofuels</subject><subject>Biofuels</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Biotechnology</subject><subject>Biotechnology - instrumentation</subject><subject>Biotechnology - methods</subject><subject>Chemical oxygen demand</subject><subject>Chloroform</subject><subject>Chloroform - pharmacology</subject><subject>Clostridium</subject><subject>Escherichia</subject><subject>Fatty acids</subject><subject>Fatty Acids, Volatile - biosynthesis</subject><subject>Hydrocarbons, Iodinated - pharmacology</subject><subject>Hydrogen</subject><subject>Hydrogen - metabolism</subject><subject>Hydrogen production</subject><subject>Life Sciences</subject><subject>Methane - metabolism</subject><subject>methanogens</subject><subject>Microbial activity</subject><subject>Microbial Consortia - drug effects</subject><subject>Microbial Consortia - genetics</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Phaeophyceae - cytology</subject><subject>Phaeophyceae - drug effects</subject><subject>Phaeophyceae - metabolism</subject><subject>Polymerase chain reaction</subject><subject>quantitative polymerase chain reaction</subject><subject>response surface methodology</subject><subject>RNA, Ribosomal, 16S</subject><subject>Saccharina japonica</subject><subject>Studies</subject><subject>Temperature</subject><subject>volatile fatty acids</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqNks1u1DAUhS0EoqXwAGzAEhs2Af_FSdihij-pUhela-vGvpnxyIkHO6k0vA1vimdSEGKBWNm-_s65uj4m5DlnbzhjzdvMmKhlxXhdacW7Sjwg51xJUTHN1UNyznhTV03dtWfkSc47xrhotX5MzkStNW-5PCc_rvezH_13mH2caBzoXQxlH5AOMM8HCta7TGFydHtwKW5wovsU3WJP_JDiSG_A2i0kPwHdwT5O3sK7k-5IY_arfIwB7RIglROEw7Fcus1bpAnzEmY_bejobYq9h0BtHMdl8rPH_JQ8GiBkfHa_XpDbjx--Xn6urq4_fbl8f1XZWuq5GnrlBNQKm3qwoGzDrFOudb1Fbi1Dpgcm0bU9dgjYIJNu4FwzBY1sVA_ygrxefct83xbMsxl9thgCTBiXbLhupGxl0-n_QHXNeacEK-irv9BdXFJ5gROlZNdq0RWKr1SZP-eEg9knP0I6GM7MMWqzRm1K1OYYtRFF8-LeeelHdL8Vv7ItgFiBXK6mDaY_Wv_D9eUqGiAa2CSfze2NKED5PKruGJM_ARG_wZ4</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Jung, Kwonsu</creator><creator>Kim, Woong</creator><creator>Park, Gwon Woo</creator><creator>Seo, Charles</creator><creator>Chang, Ho Nam</creator><creator>Kim, Yeu-Chun</creator><general>Springer-Verlag</general><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20150401</creationdate><title>Optimization of volatile fatty acids and hydrogen production from Saccharina japonica: acidogenesis and molecular analysis of the resulting microbial communities</title><author>Jung, Kwonsu ; Kim, Woong ; Park, Gwon Woo ; Seo, Charles ; Chang, Ho Nam ; Kim, Yeu-Chun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-fb4d2a54e75fca4c70cd4d8dbce1cc0e06f03ed8be9eae7e03df11604a7374ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acinetobacter</topic><topic>Algae</topic><topic>Alkanesulfonic Acids - pharmacology</topic><topic>Alternative energy sources</topic><topic>Anaerobiosis</topic><topic>Analysis</topic><topic>bacterial communities</topic><topic>beta-cyclodextrin</topic><topic>beta-Cyclodextrins - pharmacology</topic><topic>Biodiesel fuels</topic><topic>Bioenergy and Biofuels</topic><topic>Biofuels</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Biotechnology</topic><topic>Biotechnology - instrumentation</topic><topic>Biotechnology - methods</topic><topic>Chemical oxygen demand</topic><topic>Chloroform</topic><topic>Chloroform - pharmacology</topic><topic>Clostridium</topic><topic>Escherichia</topic><topic>Fatty acids</topic><topic>Fatty Acids, Volatile - biosynthesis</topic><topic>Hydrocarbons, Iodinated - pharmacology</topic><topic>Hydrogen</topic><topic>Hydrogen - metabolism</topic><topic>Hydrogen production</topic><topic>Life Sciences</topic><topic>Methane - metabolism</topic><topic>methanogens</topic><topic>Microbial activity</topic><topic>Microbial Consortia - drug effects</topic><topic>Microbial Consortia - genetics</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Phaeophyceae - cytology</topic><topic>Phaeophyceae - drug effects</topic><topic>Phaeophyceae - metabolism</topic><topic>Polymerase chain reaction</topic><topic>quantitative polymerase chain reaction</topic><topic>response surface methodology</topic><topic>RNA, Ribosomal, 16S</topic><topic>Saccharina japonica</topic><topic>Studies</topic><topic>Temperature</topic><topic>volatile fatty acids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jung, Kwonsu</creatorcontrib><creatorcontrib>Kim, Woong</creatorcontrib><creatorcontrib>Park, Gwon Woo</creatorcontrib><creatorcontrib>Seo, Charles</creatorcontrib><creatorcontrib>Chang, Ho Nam</creatorcontrib><creatorcontrib>Kim, Yeu-Chun</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Biological Sciences</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database (ProQuest)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jung, Kwonsu</au><au>Kim, Woong</au><au>Park, Gwon Woo</au><au>Seo, Charles</au><au>Chang, Ho Nam</au><au>Kim, Yeu-Chun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of volatile fatty acids and hydrogen production from Saccharina japonica: acidogenesis and molecular analysis of the resulting microbial communities</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2015-04-01</date><risdate>2015</risdate><volume>99</volume><issue>7</issue><spage>3327</spage><epage>3337</epage><pages>3327-3337</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Response surface methodology (RSM) was used to optimize the production of volatile fatty acids (VFAs) and hydrogen from mixed anaerobic cultures of Saccharina japonica with respect to two independent variables: methanogenic inhibitor concentration and temperature. The effects of four methanogenic inhibitors on acidogenic processes were tested, and qualitative microbial analyses were carried out. Escherichia, Acinetobacter, and Clostridium were the most predominant genera in samples treated with chloroform (CHCl₃), iodoform (CHI₃), 2-bromoethanesulfonate (BES), or β-cyclodextrin (β-CD), respectively. RSM showed that the production of VFAs reached a peak of 12.5 g/L at 38.6 °C in the presence of 7.4 g/L β-CD; these were the conditions under which hydrogen production was also nearly maximal. The quantitative polymerase chain reaction (qPCR) showed that shifts in the bacterial community population correlated with the concentrations of β-CD indicating that this compound effectively inhibited methanogens.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>25661813</pmid><doi>10.1007/s00253-015-6419-2</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2015-04, Vol.99 (7), p.3327-3337
issn 0175-7598
1432-0614
language eng
recordid cdi_proquest_miscellaneous_1673383796
source ABI/INFORM Global (ProQuest); Springer Link
subjects Acinetobacter
Algae
Alkanesulfonic Acids - pharmacology
Alternative energy sources
Anaerobiosis
Analysis
bacterial communities
beta-cyclodextrin
beta-Cyclodextrins - pharmacology
Biodiesel fuels
Bioenergy and Biofuels
Biofuels
Biomedical and Life Sciences
Biosynthesis
Biotechnology
Biotechnology - instrumentation
Biotechnology - methods
Chemical oxygen demand
Chloroform
Chloroform - pharmacology
Clostridium
Escherichia
Fatty acids
Fatty Acids, Volatile - biosynthesis
Hydrocarbons, Iodinated - pharmacology
Hydrogen
Hydrogen - metabolism
Hydrogen production
Life Sciences
Methane - metabolism
methanogens
Microbial activity
Microbial Consortia - drug effects
Microbial Consortia - genetics
Microbial Genetics and Genomics
Microbiology
Microorganisms
Phaeophyceae - cytology
Phaeophyceae - drug effects
Phaeophyceae - metabolism
Polymerase chain reaction
quantitative polymerase chain reaction
response surface methodology
RNA, Ribosomal, 16S
Saccharina japonica
Studies
Temperature
volatile fatty acids
title Optimization of volatile fatty acids and hydrogen production from Saccharina japonica: acidogenesis and molecular analysis of the resulting microbial communities
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T09%3A17%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20volatile%20fatty%20acids%20and%20hydrogen%20production%20from%20Saccharina%20japonica:%20acidogenesis%20and%20molecular%20analysis%20of%20the%20resulting%20microbial%20communities&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Jung,%20Kwonsu&rft.date=2015-04-01&rft.volume=99&rft.issue=7&rft.spage=3327&rft.epage=3337&rft.pages=3327-3337&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-015-6419-2&rft_dat=%3Cproquest_cross%3E3628433711%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c536t-fb4d2a54e75fca4c70cd4d8dbce1cc0e06f03ed8be9eae7e03df11604a7374ba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1664398629&rft_id=info:pmid/25661813&rfr_iscdi=true