Loading…
Optimization of volatile fatty acids and hydrogen production from Saccharina japonica: acidogenesis and molecular analysis of the resulting microbial communities
Response surface methodology (RSM) was used to optimize the production of volatile fatty acids (VFAs) and hydrogen from mixed anaerobic cultures of Saccharina japonica with respect to two independent variables: methanogenic inhibitor concentration and temperature. The effects of four methanogenic in...
Saved in:
Published in: | Applied microbiology and biotechnology 2015-04, Vol.99 (7), p.3327-3337 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c536t-fb4d2a54e75fca4c70cd4d8dbce1cc0e06f03ed8be9eae7e03df11604a7374ba3 |
---|---|
cites | cdi_FETCH-LOGICAL-c536t-fb4d2a54e75fca4c70cd4d8dbce1cc0e06f03ed8be9eae7e03df11604a7374ba3 |
container_end_page | 3337 |
container_issue | 7 |
container_start_page | 3327 |
container_title | Applied microbiology and biotechnology |
container_volume | 99 |
creator | Jung, Kwonsu Kim, Woong Park, Gwon Woo Seo, Charles Chang, Ho Nam Kim, Yeu-Chun |
description | Response surface methodology (RSM) was used to optimize the production of volatile fatty acids (VFAs) and hydrogen from mixed anaerobic cultures of Saccharina japonica with respect to two independent variables: methanogenic inhibitor concentration and temperature. The effects of four methanogenic inhibitors on acidogenic processes were tested, and qualitative microbial analyses were carried out. Escherichia, Acinetobacter, and Clostridium were the most predominant genera in samples treated with chloroform (CHCl₃), iodoform (CHI₃), 2-bromoethanesulfonate (BES), or β-cyclodextrin (β-CD), respectively. RSM showed that the production of VFAs reached a peak of 12.5 g/L at 38.6 °C in the presence of 7.4 g/L β-CD; these were the conditions under which hydrogen production was also nearly maximal. The quantitative polymerase chain reaction (qPCR) showed that shifts in the bacterial community population correlated with the concentrations of β-CD indicating that this compound effectively inhibited methanogens. |
doi_str_mv | 10.1007/s00253-015-6419-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1673383796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3628433711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-fb4d2a54e75fca4c70cd4d8dbce1cc0e06f03ed8be9eae7e03df11604a7374ba3</originalsourceid><addsrcrecordid>eNqNks1u1DAUhS0EoqXwAGzAEhs2Af_FSdihij-pUhela-vGvpnxyIkHO6k0vA1vimdSEGKBWNm-_s65uj4m5DlnbzhjzdvMmKhlxXhdacW7Sjwg51xJUTHN1UNyznhTV03dtWfkSc47xrhotX5MzkStNW-5PCc_rvezH_13mH2caBzoXQxlH5AOMM8HCta7TGFydHtwKW5wovsU3WJP_JDiSG_A2i0kPwHdwT5O3sK7k-5IY_arfIwB7RIglROEw7Fcus1bpAnzEmY_bejobYq9h0BtHMdl8rPH_JQ8GiBkfHa_XpDbjx--Xn6urq4_fbl8f1XZWuq5GnrlBNQKm3qwoGzDrFOudb1Fbi1Dpgcm0bU9dgjYIJNu4FwzBY1sVA_ygrxefct83xbMsxl9thgCTBiXbLhupGxl0-n_QHXNeacEK-irv9BdXFJ5gROlZNdq0RWKr1SZP-eEg9knP0I6GM7MMWqzRm1K1OYYtRFF8-LeeelHdL8Vv7ItgFiBXK6mDaY_Wv_D9eUqGiAa2CSfze2NKED5PKruGJM_ARG_wZ4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1664398629</pqid></control><display><type>article</type><title>Optimization of volatile fatty acids and hydrogen production from Saccharina japonica: acidogenesis and molecular analysis of the resulting microbial communities</title><source>ABI/INFORM Global (ProQuest)</source><source>Springer Link</source><creator>Jung, Kwonsu ; Kim, Woong ; Park, Gwon Woo ; Seo, Charles ; Chang, Ho Nam ; Kim, Yeu-Chun</creator><creatorcontrib>Jung, Kwonsu ; Kim, Woong ; Park, Gwon Woo ; Seo, Charles ; Chang, Ho Nam ; Kim, Yeu-Chun</creatorcontrib><description>Response surface methodology (RSM) was used to optimize the production of volatile fatty acids (VFAs) and hydrogen from mixed anaerobic cultures of Saccharina japonica with respect to two independent variables: methanogenic inhibitor concentration and temperature. The effects of four methanogenic inhibitors on acidogenic processes were tested, and qualitative microbial analyses were carried out. Escherichia, Acinetobacter, and Clostridium were the most predominant genera in samples treated with chloroform (CHCl₃), iodoform (CHI₃), 2-bromoethanesulfonate (BES), or β-cyclodextrin (β-CD), respectively. RSM showed that the production of VFAs reached a peak of 12.5 g/L at 38.6 °C in the presence of 7.4 g/L β-CD; these were the conditions under which hydrogen production was also nearly maximal. The quantitative polymerase chain reaction (qPCR) showed that shifts in the bacterial community population correlated with the concentrations of β-CD indicating that this compound effectively inhibited methanogens.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-015-6419-2</identifier><identifier>PMID: 25661813</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Acinetobacter ; Algae ; Alkanesulfonic Acids - pharmacology ; Alternative energy sources ; Anaerobiosis ; Analysis ; bacterial communities ; beta-cyclodextrin ; beta-Cyclodextrins - pharmacology ; Biodiesel fuels ; Bioenergy and Biofuels ; Biofuels ; Biomedical and Life Sciences ; Biosynthesis ; Biotechnology ; Biotechnology - instrumentation ; Biotechnology - methods ; Chemical oxygen demand ; Chloroform ; Chloroform - pharmacology ; Clostridium ; Escherichia ; Fatty acids ; Fatty Acids, Volatile - biosynthesis ; Hydrocarbons, Iodinated - pharmacology ; Hydrogen ; Hydrogen - metabolism ; Hydrogen production ; Life Sciences ; Methane - metabolism ; methanogens ; Microbial activity ; Microbial Consortia - drug effects ; Microbial Consortia - genetics ; Microbial Genetics and Genomics ; Microbiology ; Microorganisms ; Phaeophyceae - cytology ; Phaeophyceae - drug effects ; Phaeophyceae - metabolism ; Polymerase chain reaction ; quantitative polymerase chain reaction ; response surface methodology ; RNA, Ribosomal, 16S ; Saccharina japonica ; Studies ; Temperature ; volatile fatty acids</subject><ispartof>Applied microbiology and biotechnology, 2015-04, Vol.99 (7), p.3327-3337</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-fb4d2a54e75fca4c70cd4d8dbce1cc0e06f03ed8be9eae7e03df11604a7374ba3</citedby><cites>FETCH-LOGICAL-c536t-fb4d2a54e75fca4c70cd4d8dbce1cc0e06f03ed8be9eae7e03df11604a7374ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1664398629/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1664398629?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11687,27923,27924,36059,36060,44362,74666</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25661813$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jung, Kwonsu</creatorcontrib><creatorcontrib>Kim, Woong</creatorcontrib><creatorcontrib>Park, Gwon Woo</creatorcontrib><creatorcontrib>Seo, Charles</creatorcontrib><creatorcontrib>Chang, Ho Nam</creatorcontrib><creatorcontrib>Kim, Yeu-Chun</creatorcontrib><title>Optimization of volatile fatty acids and hydrogen production from Saccharina japonica: acidogenesis and molecular analysis of the resulting microbial communities</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Response surface methodology (RSM) was used to optimize the production of volatile fatty acids (VFAs) and hydrogen from mixed anaerobic cultures of Saccharina japonica with respect to two independent variables: methanogenic inhibitor concentration and temperature. The effects of four methanogenic inhibitors on acidogenic processes were tested, and qualitative microbial analyses were carried out. Escherichia, Acinetobacter, and Clostridium were the most predominant genera in samples treated with chloroform (CHCl₃), iodoform (CHI₃), 2-bromoethanesulfonate (BES), or β-cyclodextrin (β-CD), respectively. RSM showed that the production of VFAs reached a peak of 12.5 g/L at 38.6 °C in the presence of 7.4 g/L β-CD; these were the conditions under which hydrogen production was also nearly maximal. The quantitative polymerase chain reaction (qPCR) showed that shifts in the bacterial community population correlated with the concentrations of β-CD indicating that this compound effectively inhibited methanogens.</description><subject>Acinetobacter</subject><subject>Algae</subject><subject>Alkanesulfonic Acids - pharmacology</subject><subject>Alternative energy sources</subject><subject>Anaerobiosis</subject><subject>Analysis</subject><subject>bacterial communities</subject><subject>beta-cyclodextrin</subject><subject>beta-Cyclodextrins - pharmacology</subject><subject>Biodiesel fuels</subject><subject>Bioenergy and Biofuels</subject><subject>Biofuels</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Biotechnology</subject><subject>Biotechnology - instrumentation</subject><subject>Biotechnology - methods</subject><subject>Chemical oxygen demand</subject><subject>Chloroform</subject><subject>Chloroform - pharmacology</subject><subject>Clostridium</subject><subject>Escherichia</subject><subject>Fatty acids</subject><subject>Fatty Acids, Volatile - biosynthesis</subject><subject>Hydrocarbons, Iodinated - pharmacology</subject><subject>Hydrogen</subject><subject>Hydrogen - metabolism</subject><subject>Hydrogen production</subject><subject>Life Sciences</subject><subject>Methane - metabolism</subject><subject>methanogens</subject><subject>Microbial activity</subject><subject>Microbial Consortia - drug effects</subject><subject>Microbial Consortia - genetics</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Phaeophyceae - cytology</subject><subject>Phaeophyceae - drug effects</subject><subject>Phaeophyceae - metabolism</subject><subject>Polymerase chain reaction</subject><subject>quantitative polymerase chain reaction</subject><subject>response surface methodology</subject><subject>RNA, Ribosomal, 16S</subject><subject>Saccharina japonica</subject><subject>Studies</subject><subject>Temperature</subject><subject>volatile fatty acids</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqNks1u1DAUhS0EoqXwAGzAEhs2Af_FSdihij-pUhela-vGvpnxyIkHO6k0vA1vimdSEGKBWNm-_s65uj4m5DlnbzhjzdvMmKhlxXhdacW7Sjwg51xJUTHN1UNyznhTV03dtWfkSc47xrhotX5MzkStNW-5PCc_rvezH_13mH2caBzoXQxlH5AOMM8HCta7TGFydHtwKW5wovsU3WJP_JDiSG_A2i0kPwHdwT5O3sK7k-5IY_arfIwB7RIglROEw7Fcus1bpAnzEmY_bejobYq9h0BtHMdl8rPH_JQ8GiBkfHa_XpDbjx--Xn6urq4_fbl8f1XZWuq5GnrlBNQKm3qwoGzDrFOudb1Fbi1Dpgcm0bU9dgjYIJNu4FwzBY1sVA_ygrxefct83xbMsxl9thgCTBiXbLhupGxl0-n_QHXNeacEK-irv9BdXFJ5gROlZNdq0RWKr1SZP-eEg9knP0I6GM7MMWqzRm1K1OYYtRFF8-LeeelHdL8Vv7ItgFiBXK6mDaY_Wv_D9eUqGiAa2CSfze2NKED5PKruGJM_ARG_wZ4</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Jung, Kwonsu</creator><creator>Kim, Woong</creator><creator>Park, Gwon Woo</creator><creator>Seo, Charles</creator><creator>Chang, Ho Nam</creator><creator>Kim, Yeu-Chun</creator><general>Springer-Verlag</general><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20150401</creationdate><title>Optimization of volatile fatty acids and hydrogen production from Saccharina japonica: acidogenesis and molecular analysis of the resulting microbial communities</title><author>Jung, Kwonsu ; Kim, Woong ; Park, Gwon Woo ; Seo, Charles ; Chang, Ho Nam ; Kim, Yeu-Chun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-fb4d2a54e75fca4c70cd4d8dbce1cc0e06f03ed8be9eae7e03df11604a7374ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acinetobacter</topic><topic>Algae</topic><topic>Alkanesulfonic Acids - pharmacology</topic><topic>Alternative energy sources</topic><topic>Anaerobiosis</topic><topic>Analysis</topic><topic>bacterial communities</topic><topic>beta-cyclodextrin</topic><topic>beta-Cyclodextrins - pharmacology</topic><topic>Biodiesel fuels</topic><topic>Bioenergy and Biofuels</topic><topic>Biofuels</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Biotechnology</topic><topic>Biotechnology - instrumentation</topic><topic>Biotechnology - methods</topic><topic>Chemical oxygen demand</topic><topic>Chloroform</topic><topic>Chloroform - pharmacology</topic><topic>Clostridium</topic><topic>Escherichia</topic><topic>Fatty acids</topic><topic>Fatty Acids, Volatile - biosynthesis</topic><topic>Hydrocarbons, Iodinated - pharmacology</topic><topic>Hydrogen</topic><topic>Hydrogen - metabolism</topic><topic>Hydrogen production</topic><topic>Life Sciences</topic><topic>Methane - metabolism</topic><topic>methanogens</topic><topic>Microbial activity</topic><topic>Microbial Consortia - drug effects</topic><topic>Microbial Consortia - genetics</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Phaeophyceae - cytology</topic><topic>Phaeophyceae - drug effects</topic><topic>Phaeophyceae - metabolism</topic><topic>Polymerase chain reaction</topic><topic>quantitative polymerase chain reaction</topic><topic>response surface methodology</topic><topic>RNA, Ribosomal, 16S</topic><topic>Saccharina japonica</topic><topic>Studies</topic><topic>Temperature</topic><topic>volatile fatty acids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jung, Kwonsu</creatorcontrib><creatorcontrib>Kim, Woong</creatorcontrib><creatorcontrib>Park, Gwon Woo</creatorcontrib><creatorcontrib>Seo, Charles</creatorcontrib><creatorcontrib>Chang, Ho Nam</creatorcontrib><creatorcontrib>Kim, Yeu-Chun</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Biological Sciences</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database (ProQuest)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jung, Kwonsu</au><au>Kim, Woong</au><au>Park, Gwon Woo</au><au>Seo, Charles</au><au>Chang, Ho Nam</au><au>Kim, Yeu-Chun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of volatile fatty acids and hydrogen production from Saccharina japonica: acidogenesis and molecular analysis of the resulting microbial communities</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2015-04-01</date><risdate>2015</risdate><volume>99</volume><issue>7</issue><spage>3327</spage><epage>3337</epage><pages>3327-3337</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Response surface methodology (RSM) was used to optimize the production of volatile fatty acids (VFAs) and hydrogen from mixed anaerobic cultures of Saccharina japonica with respect to two independent variables: methanogenic inhibitor concentration and temperature. The effects of four methanogenic inhibitors on acidogenic processes were tested, and qualitative microbial analyses were carried out. Escherichia, Acinetobacter, and Clostridium were the most predominant genera in samples treated with chloroform (CHCl₃), iodoform (CHI₃), 2-bromoethanesulfonate (BES), or β-cyclodextrin (β-CD), respectively. RSM showed that the production of VFAs reached a peak of 12.5 g/L at 38.6 °C in the presence of 7.4 g/L β-CD; these were the conditions under which hydrogen production was also nearly maximal. The quantitative polymerase chain reaction (qPCR) showed that shifts in the bacterial community population correlated with the concentrations of β-CD indicating that this compound effectively inhibited methanogens.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>25661813</pmid><doi>10.1007/s00253-015-6419-2</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0175-7598 |
ispartof | Applied microbiology and biotechnology, 2015-04, Vol.99 (7), p.3327-3337 |
issn | 0175-7598 1432-0614 |
language | eng |
recordid | cdi_proquest_miscellaneous_1673383796 |
source | ABI/INFORM Global (ProQuest); Springer Link |
subjects | Acinetobacter Algae Alkanesulfonic Acids - pharmacology Alternative energy sources Anaerobiosis Analysis bacterial communities beta-cyclodextrin beta-Cyclodextrins - pharmacology Biodiesel fuels Bioenergy and Biofuels Biofuels Biomedical and Life Sciences Biosynthesis Biotechnology Biotechnology - instrumentation Biotechnology - methods Chemical oxygen demand Chloroform Chloroform - pharmacology Clostridium Escherichia Fatty acids Fatty Acids, Volatile - biosynthesis Hydrocarbons, Iodinated - pharmacology Hydrogen Hydrogen - metabolism Hydrogen production Life Sciences Methane - metabolism methanogens Microbial activity Microbial Consortia - drug effects Microbial Consortia - genetics Microbial Genetics and Genomics Microbiology Microorganisms Phaeophyceae - cytology Phaeophyceae - drug effects Phaeophyceae - metabolism Polymerase chain reaction quantitative polymerase chain reaction response surface methodology RNA, Ribosomal, 16S Saccharina japonica Studies Temperature volatile fatty acids |
title | Optimization of volatile fatty acids and hydrogen production from Saccharina japonica: acidogenesis and molecular analysis of the resulting microbial communities |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T09%3A17%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20volatile%20fatty%20acids%20and%20hydrogen%20production%20from%20Saccharina%20japonica:%20acidogenesis%20and%20molecular%20analysis%20of%20the%20resulting%20microbial%20communities&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Jung,%20Kwonsu&rft.date=2015-04-01&rft.volume=99&rft.issue=7&rft.spage=3327&rft.epage=3337&rft.pages=3327-3337&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-015-6419-2&rft_dat=%3Cproquest_cross%3E3628433711%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c536t-fb4d2a54e75fca4c70cd4d8dbce1cc0e06f03ed8be9eae7e03df11604a7374ba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1664398629&rft_id=info:pmid/25661813&rfr_iscdi=true |