Loading…

Application of a variational method to the vertical hydrodynamic impact of axisymmetric bodies

The application of a desingularized variational numerical method to the vertical hydrodynamic impact problem of axisymmetric bodies is addressed here within the so-called Generalized von Kármán Model (GvKM). A weak formulation is used and the velocity potential is numerically approximated in a Sobol...

Full description

Saved in:
Bibliographic Details
Published in:Applied ocean research 2013-01, Vol.39, p.75-82
Main Authors: Santos, Flávia M., Casetta, Leonardo, Pesce, Celso P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c333t-4d73bda3203cffd1c83a64fac668fa54c7c4cfb7ebbbe6a4206e9cea46dd93b3
cites cdi_FETCH-LOGICAL-c333t-4d73bda3203cffd1c83a64fac668fa54c7c4cfb7ebbbe6a4206e9cea46dd93b3
container_end_page 82
container_issue
container_start_page 75
container_title Applied ocean research
container_volume 39
creator Santos, Flávia M.
Casetta, Leonardo
Pesce, Celso P.
description The application of a desingularized variational numerical method to the vertical hydrodynamic impact problem of axisymmetric bodies is addressed here within the so-called Generalized von Kármán Model (GvKM). A weak formulation is used and the velocity potential is numerically approximated in a Sobolev space. Trial functions are conveniently written as finite summations of elementary potentials. A main advantage of the proposed technique is the fact that a first-order error in the velocity potential computation implies a second-order error in the added mass value. Good agreement in added mass calculations is verified for a sphere and for an oblate spheroid in comparison with results obtained from WAMIT®. ▸ A desingularized variational numerical method is presented to treat the hydrodynamic impact problem. ▸ Trial functions are constructed from elementary potential solutions. ▸ An integral measurement for the boundary condition error contained in the weak solution is proposed. ▸ Added mass calculation follows a Rayleigh-like quotient scheme leading to second order errors results.
doi_str_mv 10.1016/j.apor.2012.10.002
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1676350315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141118712000806</els_id><sourcerecordid>1676350315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-4d73bda3203cffd1c83a64fac668fa54c7c4cfb7ebbbe6a4206e9cea46dd93b3</originalsourceid><addsrcrecordid>eNp9kD1rwzAQhkVpoWnaP9BJYxenkiXLNnQJpV8Q6JK5QpbORMG2XEkJ9b-vnHTudNzL8xzci9A9JStKqHjcr9To_ConNE_BipD8Ai1oVdYZLXh9iRaEcprRlFyjmxD2JIGVqBboaz2OndUqWjdg12KFj8rb06o63EPcOYOjw3EH-Ag-JrTDu8l4Z6ZB9VZj249Kx5P7Y8PUJ8enuHHGQrhFV63qAtz9zSXavr5sn9-zzefbx_N6k2nGWMy4KVljFMsJ021rqK6YErxVWoiqVQXXpea6bUpomgaE4jkRUGtQXBhTs4Yt0cP57Ojd9wFClL0NGrpODeAOQVJRClYQRouE5mdUexeCh1aO3vbKT5ISOXcp93LuUs5dzlnqMklPZwnSD0cLXgZtYdBgrAcdpXH2P_0XtXKAXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1676350315</pqid></control><display><type>article</type><title>Application of a variational method to the vertical hydrodynamic impact of axisymmetric bodies</title><source>ScienceDirect Journals</source><creator>Santos, Flávia M. ; Casetta, Leonardo ; Pesce, Celso P.</creator><creatorcontrib>Santos, Flávia M. ; Casetta, Leonardo ; Pesce, Celso P.</creatorcontrib><description>The application of a desingularized variational numerical method to the vertical hydrodynamic impact problem of axisymmetric bodies is addressed here within the so-called Generalized von Kármán Model (GvKM). A weak formulation is used and the velocity potential is numerically approximated in a Sobolev space. Trial functions are conveniently written as finite summations of elementary potentials. A main advantage of the proposed technique is the fact that a first-order error in the velocity potential computation implies a second-order error in the added mass value. Good agreement in added mass calculations is verified for a sphere and for an oblate spheroid in comparison with results obtained from WAMIT®. ▸ A desingularized variational numerical method is presented to treat the hydrodynamic impact problem. ▸ Trial functions are constructed from elementary potential solutions. ▸ An integral measurement for the boundary condition error contained in the weak solution is proposed. ▸ Added mass calculation follows a Rayleigh-like quotient scheme leading to second order errors results.</description><identifier>ISSN: 0141-1187</identifier><identifier>EISSN: 1879-1549</identifier><identifier>DOI: 10.1016/j.apor.2012.10.002</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Axisymmetric bodies ; Desingularized variational numerical method ; Hydrodynamic impact problem ; Weak formulation</subject><ispartof>Applied ocean research, 2013-01, Vol.39, p.75-82</ispartof><rights>2012 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-4d73bda3203cffd1c83a64fac668fa54c7c4cfb7ebbbe6a4206e9cea46dd93b3</citedby><cites>FETCH-LOGICAL-c333t-4d73bda3203cffd1c83a64fac668fa54c7c4cfb7ebbbe6a4206e9cea46dd93b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Santos, Flávia M.</creatorcontrib><creatorcontrib>Casetta, Leonardo</creatorcontrib><creatorcontrib>Pesce, Celso P.</creatorcontrib><title>Application of a variational method to the vertical hydrodynamic impact of axisymmetric bodies</title><title>Applied ocean research</title><description>The application of a desingularized variational numerical method to the vertical hydrodynamic impact problem of axisymmetric bodies is addressed here within the so-called Generalized von Kármán Model (GvKM). A weak formulation is used and the velocity potential is numerically approximated in a Sobolev space. Trial functions are conveniently written as finite summations of elementary potentials. A main advantage of the proposed technique is the fact that a first-order error in the velocity potential computation implies a second-order error in the added mass value. Good agreement in added mass calculations is verified for a sphere and for an oblate spheroid in comparison with results obtained from WAMIT®. ▸ A desingularized variational numerical method is presented to treat the hydrodynamic impact problem. ▸ Trial functions are constructed from elementary potential solutions. ▸ An integral measurement for the boundary condition error contained in the weak solution is proposed. ▸ Added mass calculation follows a Rayleigh-like quotient scheme leading to second order errors results.</description><subject>Axisymmetric bodies</subject><subject>Desingularized variational numerical method</subject><subject>Hydrodynamic impact problem</subject><subject>Weak formulation</subject><issn>0141-1187</issn><issn>1879-1549</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kD1rwzAQhkVpoWnaP9BJYxenkiXLNnQJpV8Q6JK5QpbORMG2XEkJ9b-vnHTudNzL8xzci9A9JStKqHjcr9To_ConNE_BipD8Ai1oVdYZLXh9iRaEcprRlFyjmxD2JIGVqBboaz2OndUqWjdg12KFj8rb06o63EPcOYOjw3EH-Ag-JrTDu8l4Z6ZB9VZj249Kx5P7Y8PUJ8enuHHGQrhFV63qAtz9zSXavr5sn9-zzefbx_N6k2nGWMy4KVljFMsJ021rqK6YErxVWoiqVQXXpea6bUpomgaE4jkRUGtQXBhTs4Yt0cP57Ojd9wFClL0NGrpODeAOQVJRClYQRouE5mdUexeCh1aO3vbKT5ISOXcp93LuUs5dzlnqMklPZwnSD0cLXgZtYdBgrAcdpXH2P_0XtXKAXQ</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Santos, Flávia M.</creator><creator>Casetta, Leonardo</creator><creator>Pesce, Celso P.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>201301</creationdate><title>Application of a variational method to the vertical hydrodynamic impact of axisymmetric bodies</title><author>Santos, Flávia M. ; Casetta, Leonardo ; Pesce, Celso P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-4d73bda3203cffd1c83a64fac668fa54c7c4cfb7ebbbe6a4206e9cea46dd93b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Axisymmetric bodies</topic><topic>Desingularized variational numerical method</topic><topic>Hydrodynamic impact problem</topic><topic>Weak formulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santos, Flávia M.</creatorcontrib><creatorcontrib>Casetta, Leonardo</creatorcontrib><creatorcontrib>Pesce, Celso P.</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Applied ocean research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santos, Flávia M.</au><au>Casetta, Leonardo</au><au>Pesce, Celso P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of a variational method to the vertical hydrodynamic impact of axisymmetric bodies</atitle><jtitle>Applied ocean research</jtitle><date>2013-01</date><risdate>2013</risdate><volume>39</volume><spage>75</spage><epage>82</epage><pages>75-82</pages><issn>0141-1187</issn><eissn>1879-1549</eissn><abstract>The application of a desingularized variational numerical method to the vertical hydrodynamic impact problem of axisymmetric bodies is addressed here within the so-called Generalized von Kármán Model (GvKM). A weak formulation is used and the velocity potential is numerically approximated in a Sobolev space. Trial functions are conveniently written as finite summations of elementary potentials. A main advantage of the proposed technique is the fact that a first-order error in the velocity potential computation implies a second-order error in the added mass value. Good agreement in added mass calculations is verified for a sphere and for an oblate spheroid in comparison with results obtained from WAMIT®. ▸ A desingularized variational numerical method is presented to treat the hydrodynamic impact problem. ▸ Trial functions are constructed from elementary potential solutions. ▸ An integral measurement for the boundary condition error contained in the weak solution is proposed. ▸ Added mass calculation follows a Rayleigh-like quotient scheme leading to second order errors results.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.apor.2012.10.002</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0141-1187
ispartof Applied ocean research, 2013-01, Vol.39, p.75-82
issn 0141-1187
1879-1549
language eng
recordid cdi_proquest_miscellaneous_1676350315
source ScienceDirect Journals
subjects Axisymmetric bodies
Desingularized variational numerical method
Hydrodynamic impact problem
Weak formulation
title Application of a variational method to the vertical hydrodynamic impact of axisymmetric bodies
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A52%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20a%20variational%20method%20to%20the%20vertical%20hydrodynamic%20impact%20of%20axisymmetric%20bodies&rft.jtitle=Applied%20ocean%20research&rft.au=Santos,%20Fl%C3%A1via%20M.&rft.date=2013-01&rft.volume=39&rft.spage=75&rft.epage=82&rft.pages=75-82&rft.issn=0141-1187&rft.eissn=1879-1549&rft_id=info:doi/10.1016/j.apor.2012.10.002&rft_dat=%3Cproquest_cross%3E1676350315%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-4d73bda3203cffd1c83a64fac668fa54c7c4cfb7ebbbe6a4206e9cea46dd93b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1676350315&rft_id=info:pmid/&rfr_iscdi=true