Loading…
F pocket flexibility influences the tapasin dependence of two differentially disease‐associated MHC Class I proteins
The human MHC class I protein HLA‐B*27:05 is statistically associated with ankylosing spondylitis, unlike HLA‐B*27:09, which differs in a single amino acid in the F pocket of the peptide‐binding groove. To understand how this unique amino acid difference leads to a different behavior of the proteins...
Saved in:
Published in: | European journal of immunology 2015-04, Vol.45 (4), p.1248-1257 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The human MHC class I protein HLA‐B*27:05 is statistically associated with ankylosing spondylitis, unlike HLA‐B*27:09, which differs in a single amino acid in the F pocket of the peptide‐binding groove. To understand how this unique amino acid difference leads to a different behavior of the proteins in the cell, we have investigated the conformational stability of both proteins using a combination of in silico and experimental approaches. Here, we show that the binding site of B*27:05 is conformationally disordered in the absence of peptide due to a charge repulsion at the bottom of the F pocket. In agreement with this, B*27:05 requires the chaperone protein tapasin to a greater extent than the conformationally stable B*27:09 in order to remain structured and to bind peptide. Taken together, our data demonstrate a method to predict tapasin dependence and physiological behavior from the sequence and crystal structure of a particular class I allotype.
Also watch the Video |
---|---|
ISSN: | 0014-2980 1521-4141 |
DOI: | 10.1002/eji.201445307 |