Loading…
Polymorphisms in the alpha-amy1 gene of wild and cultivated barley revealed by the polymerase chain reaction
alpha-Amylases are the key enzymes involved in the hydrolysis of starch in plants. The polymerase chain reaction (PCR) was used to detect polymorphisms in the length of amplified sequences between the annealing sites of two primers derived from published alpha-amy1 gene sequences in barley. These tw...
Saved in:
Published in: | Theoretical and applied genetics 1994-10, Vol.89 (4), p.509-513 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | alpha-Amylases are the key enzymes involved in the hydrolysis of starch in plants. The polymerase chain reaction (PCR) was used to detect polymorphisms in the length of amplified sequences between the annealing sites of two primers derived from published alpha-amy1 gene sequences in barley. These two primers (Bsw1 and Bsw7), flanking the promoter region and the first exon, amplified two PCR fragments in barley. One of the amplified products, with the expected length of 820 bp, appeared together with another shorter PCR band of around 750 bp. This 750-bp fragment seems to be derived from an alpha-amylase gene not reported previously. Both of the PCR products could be amplified from the two-rowed barley varieties tested, including cv Himalaya from which the sequence information was obtained. Five of the six-rowed barley varieties also have the two PCR fragments whereas another two have only the long fragment. These two fragments seem to be unique to barley, neither of them could be amplified from other cereals; for example, wheat, rye or sorghum. These two alpha-amylase fragments were mapped to the long arm of 6H, the location of the alpha-amy1 genes, using wheat-barley addition lines. Amplification of genomic DNA from wild barley accessions with primers Bsw1 and Bsw7 indicated that both of the fragments could be present, or the long and short fragments could be present alone. The results also demonstrated that the genes specifying these two fragments could be independent from each other in barley. The conserved banding pattern of these two fragments in the two-rowed barley varieties implies that artificial selection from these genes may have played an important role in the evolution of cultivated barley from wild barley. |
---|---|
ISSN: | 0040-5752 1432-2242 |
DOI: | 10.1007/BF00225388 |