Loading…
Fuzzy expert system for predicting pathological stage of prostate cancer
► We model a system for predicting pathological stage of prostate cancer. ► We develop a hybrid system: a rule-based fuzzy system where a genetic algorithm is used to optimize the parameters. ► Performance of genetic-fuzzy system constructed, for the database used, show superior Partin tables. Prost...
Saved in:
Published in: | Expert systems with applications 2013-02, Vol.40 (2), p.466-470 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c396t-5eb8135d3bb9cb8ff2a8443763e47b0ef7a1f76bc9a6aaef32a029c7dfd9a56e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c396t-5eb8135d3bb9cb8ff2a8443763e47b0ef7a1f76bc9a6aaef32a029c7dfd9a56e3 |
container_end_page | 470 |
container_issue | 2 |
container_start_page | 466 |
container_title | Expert systems with applications |
container_volume | 40 |
creator | Castanho, M.J.P. Hernandes, F. De Ré, A.M. Rautenberg, S. Billis, A. |
description | ► We model a system for predicting pathological stage of prostate cancer. ► We develop a hybrid system: a rule-based fuzzy system where a genetic algorithm is used to optimize the parameters. ► Performance of genetic-fuzzy system constructed, for the database used, show superior Partin tables.
Prostate cancer is the second most common cancer among men, responsible for the loss of half a million lives each year worldwide, according to the World Health Organization. In prostate cancer, definitive therapy such as radical prostatectomy, is more effective when the cancer is organ-confined. The aim of this study is to investigate the performance of some fuzzy expert systems in the classification of patients with confined or non-confined cancer. To deal with the intrinsic uncertainty about the variables utilized to predict cancer stage, the developed approach is based on Fuzzy Set Theory. A fuzzy expert system was developed with the fuzzy rules and membership functions tuned by a genetic algorithm. As a result, the utilized approach reached better precision taking into account some correlated studies. |
doi_str_mv | 10.1016/j.eswa.2012.07.046 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677903197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417412009013</els_id><sourcerecordid>1349471793</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-5eb8135d3bb9cb8ff2a8443763e47b0ef7a1f76bc9a6aaef32a029c7dfd9a56e3</originalsourceid><addsrcrecordid>eNqF0MFKAzEQBuAgCtbqC3jai-Bl12STZjbgRcSqIHjRc8hmJzVl261JqtanN6XFo54yh3_-IR8h54xWjDJ5Na8wfpqqpqyuKFRUyAMyYg3wUoLih2RE1QRKwUAck5MY55QyoBRG5GG6_v7eFPi1wpCKuIkJF4UbQrEK2Hmb_HJWrEx6G_ph5q3pi5jMDIvB5cCQ54SFNUuL4ZQcOdNHPNu_Y_I6vXu5fSifnu8fb2-eSsuVTOUE24bxScfbVtm2ca42jRAcJEcBLUUHhjmQrVVGGoOO14bWykLnOmUmEvmYXO568_33NcakFz5a7HuzxGEdNZMAinKm4P8oF0oAy0A5Wu-iNv8qBnR6FfzChI1mVG-F9VxvhfVWWFPQWTgvXez7Tcw0LmQIH383a8jojdiWX-9ymF0-PAYdrceM1vmANulu8H-d-QEwspK2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1349471793</pqid></control><display><type>article</type><title>Fuzzy expert system for predicting pathological stage of prostate cancer</title><source>ScienceDirect Journals</source><creator>Castanho, M.J.P. ; Hernandes, F. ; De Ré, A.M. ; Rautenberg, S. ; Billis, A.</creator><creatorcontrib>Castanho, M.J.P. ; Hernandes, F. ; De Ré, A.M. ; Rautenberg, S. ; Billis, A.</creatorcontrib><description>► We model a system for predicting pathological stage of prostate cancer. ► We develop a hybrid system: a rule-based fuzzy system where a genetic algorithm is used to optimize the parameters. ► Performance of genetic-fuzzy system constructed, for the database used, show superior Partin tables.
Prostate cancer is the second most common cancer among men, responsible for the loss of half a million lives each year worldwide, according to the World Health Organization. In prostate cancer, definitive therapy such as radical prostatectomy, is more effective when the cancer is organ-confined. The aim of this study is to investigate the performance of some fuzzy expert systems in the classification of patients with confined or non-confined cancer. To deal with the intrinsic uncertainty about the variables utilized to predict cancer stage, the developed approach is based on Fuzzy Set Theory. A fuzzy expert system was developed with the fuzzy rules and membership functions tuned by a genetic algorithm. As a result, the utilized approach reached better precision taking into account some correlated studies.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2012.07.046</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Animal tumors. Experimental tumors ; Applied sciences ; Artificial intelligence ; Biological and medical sciences ; Cancer ; Classification ; Computer science; control theory; systems ; Exact sciences and technology ; Experimental genital and mammary tumors ; Expert systems ; Fuzzy ; Fuzzy logic ; Fuzzy rule-based system ; Fuzzy set theory ; Genetic algorithm ; Medical sciences ; Prostate ; Prostate cancer ; Radicals ; Tumors</subject><ispartof>Expert systems with applications, 2013-02, Vol.40 (2), p.466-470</ispartof><rights>2012 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-5eb8135d3bb9cb8ff2a8443763e47b0ef7a1f76bc9a6aaef32a029c7dfd9a56e3</citedby><cites>FETCH-LOGICAL-c396t-5eb8135d3bb9cb8ff2a8443763e47b0ef7a1f76bc9a6aaef32a029c7dfd9a56e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27095843$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Castanho, M.J.P.</creatorcontrib><creatorcontrib>Hernandes, F.</creatorcontrib><creatorcontrib>De Ré, A.M.</creatorcontrib><creatorcontrib>Rautenberg, S.</creatorcontrib><creatorcontrib>Billis, A.</creatorcontrib><title>Fuzzy expert system for predicting pathological stage of prostate cancer</title><title>Expert systems with applications</title><description>► We model a system for predicting pathological stage of prostate cancer. ► We develop a hybrid system: a rule-based fuzzy system where a genetic algorithm is used to optimize the parameters. ► Performance of genetic-fuzzy system constructed, for the database used, show superior Partin tables.
Prostate cancer is the second most common cancer among men, responsible for the loss of half a million lives each year worldwide, according to the World Health Organization. In prostate cancer, definitive therapy such as radical prostatectomy, is more effective when the cancer is organ-confined. The aim of this study is to investigate the performance of some fuzzy expert systems in the classification of patients with confined or non-confined cancer. To deal with the intrinsic uncertainty about the variables utilized to predict cancer stage, the developed approach is based on Fuzzy Set Theory. A fuzzy expert system was developed with the fuzzy rules and membership functions tuned by a genetic algorithm. As a result, the utilized approach reached better precision taking into account some correlated studies.</description><subject>Animal tumors. Experimental tumors</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Biological and medical sciences</subject><subject>Cancer</subject><subject>Classification</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Experimental genital and mammary tumors</subject><subject>Expert systems</subject><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>Fuzzy rule-based system</subject><subject>Fuzzy set theory</subject><subject>Genetic algorithm</subject><subject>Medical sciences</subject><subject>Prostate</subject><subject>Prostate cancer</subject><subject>Radicals</subject><subject>Tumors</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqF0MFKAzEQBuAgCtbqC3jai-Bl12STZjbgRcSqIHjRc8hmJzVl261JqtanN6XFo54yh3_-IR8h54xWjDJ5Na8wfpqqpqyuKFRUyAMyYg3wUoLih2RE1QRKwUAck5MY55QyoBRG5GG6_v7eFPi1wpCKuIkJF4UbQrEK2Hmb_HJWrEx6G_ph5q3pi5jMDIvB5cCQ54SFNUuL4ZQcOdNHPNu_Y_I6vXu5fSifnu8fb2-eSsuVTOUE24bxScfbVtm2ca42jRAcJEcBLUUHhjmQrVVGGoOO14bWykLnOmUmEvmYXO568_33NcakFz5a7HuzxGEdNZMAinKm4P8oF0oAy0A5Wu-iNv8qBnR6FfzChI1mVG-F9VxvhfVWWFPQWTgvXez7Tcw0LmQIH383a8jojdiWX-9ymF0-PAYdrceM1vmANulu8H-d-QEwspK2</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Castanho, M.J.P.</creator><creator>Hernandes, F.</creator><creator>De Ré, A.M.</creator><creator>Rautenberg, S.</creator><creator>Billis, A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130201</creationdate><title>Fuzzy expert system for predicting pathological stage of prostate cancer</title><author>Castanho, M.J.P. ; Hernandes, F. ; De Ré, A.M. ; Rautenberg, S. ; Billis, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-5eb8135d3bb9cb8ff2a8443763e47b0ef7a1f76bc9a6aaef32a029c7dfd9a56e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animal tumors. Experimental tumors</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Biological and medical sciences</topic><topic>Cancer</topic><topic>Classification</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Experimental genital and mammary tumors</topic><topic>Expert systems</topic><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>Fuzzy rule-based system</topic><topic>Fuzzy set theory</topic><topic>Genetic algorithm</topic><topic>Medical sciences</topic><topic>Prostate</topic><topic>Prostate cancer</topic><topic>Radicals</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castanho, M.J.P.</creatorcontrib><creatorcontrib>Hernandes, F.</creatorcontrib><creatorcontrib>De Ré, A.M.</creatorcontrib><creatorcontrib>Rautenberg, S.</creatorcontrib><creatorcontrib>Billis, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castanho, M.J.P.</au><au>Hernandes, F.</au><au>De Ré, A.M.</au><au>Rautenberg, S.</au><au>Billis, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy expert system for predicting pathological stage of prostate cancer</atitle><jtitle>Expert systems with applications</jtitle><date>2013-02-01</date><risdate>2013</risdate><volume>40</volume><issue>2</issue><spage>466</spage><epage>470</epage><pages>466-470</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>► We model a system for predicting pathological stage of prostate cancer. ► We develop a hybrid system: a rule-based fuzzy system where a genetic algorithm is used to optimize the parameters. ► Performance of genetic-fuzzy system constructed, for the database used, show superior Partin tables.
Prostate cancer is the second most common cancer among men, responsible for the loss of half a million lives each year worldwide, according to the World Health Organization. In prostate cancer, definitive therapy such as radical prostatectomy, is more effective when the cancer is organ-confined. The aim of this study is to investigate the performance of some fuzzy expert systems in the classification of patients with confined or non-confined cancer. To deal with the intrinsic uncertainty about the variables utilized to predict cancer stage, the developed approach is based on Fuzzy Set Theory. A fuzzy expert system was developed with the fuzzy rules and membership functions tuned by a genetic algorithm. As a result, the utilized approach reached better precision taking into account some correlated studies.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2012.07.046</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4174 |
ispartof | Expert systems with applications, 2013-02, Vol.40 (2), p.466-470 |
issn | 0957-4174 1873-6793 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677903197 |
source | ScienceDirect Journals |
subjects | Animal tumors. Experimental tumors Applied sciences Artificial intelligence Biological and medical sciences Cancer Classification Computer science control theory systems Exact sciences and technology Experimental genital and mammary tumors Expert systems Fuzzy Fuzzy logic Fuzzy rule-based system Fuzzy set theory Genetic algorithm Medical sciences Prostate Prostate cancer Radicals Tumors |
title | Fuzzy expert system for predicting pathological stage of prostate cancer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A21%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20expert%20system%20for%20predicting%20pathological%20stage%20of%20prostate%20cancer&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Castanho,%20M.J.P.&rft.date=2013-02-01&rft.volume=40&rft.issue=2&rft.spage=466&rft.epage=470&rft.pages=466-470&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2012.07.046&rft_dat=%3Cproquest_cross%3E1349471793%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c396t-5eb8135d3bb9cb8ff2a8443763e47b0ef7a1f76bc9a6aaef32a029c7dfd9a56e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1349471793&rft_id=info:pmid/&rfr_iscdi=true |