Loading…

Fuzzy expert system for predicting pathological stage of prostate cancer

► We model a system for predicting pathological stage of prostate cancer. ► We develop a hybrid system: a rule-based fuzzy system where a genetic algorithm is used to optimize the parameters. ► Performance of genetic-fuzzy system constructed, for the database used, show superior Partin tables. Prost...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications 2013-02, Vol.40 (2), p.466-470
Main Authors: Castanho, M.J.P., Hernandes, F., De Ré, A.M., Rautenberg, S., Billis, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c396t-5eb8135d3bb9cb8ff2a8443763e47b0ef7a1f76bc9a6aaef32a029c7dfd9a56e3
cites cdi_FETCH-LOGICAL-c396t-5eb8135d3bb9cb8ff2a8443763e47b0ef7a1f76bc9a6aaef32a029c7dfd9a56e3
container_end_page 470
container_issue 2
container_start_page 466
container_title Expert systems with applications
container_volume 40
creator Castanho, M.J.P.
Hernandes, F.
De Ré, A.M.
Rautenberg, S.
Billis, A.
description ► We model a system for predicting pathological stage of prostate cancer. ► We develop a hybrid system: a rule-based fuzzy system where a genetic algorithm is used to optimize the parameters. ► Performance of genetic-fuzzy system constructed, for the database used, show superior Partin tables. Prostate cancer is the second most common cancer among men, responsible for the loss of half a million lives each year worldwide, according to the World Health Organization. In prostate cancer, definitive therapy such as radical prostatectomy, is more effective when the cancer is organ-confined. The aim of this study is to investigate the performance of some fuzzy expert systems in the classification of patients with confined or non-confined cancer. To deal with the intrinsic uncertainty about the variables utilized to predict cancer stage, the developed approach is based on Fuzzy Set Theory. A fuzzy expert system was developed with the fuzzy rules and membership functions tuned by a genetic algorithm. As a result, the utilized approach reached better precision taking into account some correlated studies.
doi_str_mv 10.1016/j.eswa.2012.07.046
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677903197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417412009013</els_id><sourcerecordid>1349471793</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-5eb8135d3bb9cb8ff2a8443763e47b0ef7a1f76bc9a6aaef32a029c7dfd9a56e3</originalsourceid><addsrcrecordid>eNqF0MFKAzEQBuAgCtbqC3jai-Bl12STZjbgRcSqIHjRc8hmJzVl261JqtanN6XFo54yh3_-IR8h54xWjDJ5Na8wfpqqpqyuKFRUyAMyYg3wUoLih2RE1QRKwUAck5MY55QyoBRG5GG6_v7eFPi1wpCKuIkJF4UbQrEK2Hmb_HJWrEx6G_ph5q3pi5jMDIvB5cCQ54SFNUuL4ZQcOdNHPNu_Y_I6vXu5fSifnu8fb2-eSsuVTOUE24bxScfbVtm2ca42jRAcJEcBLUUHhjmQrVVGGoOO14bWykLnOmUmEvmYXO568_33NcakFz5a7HuzxGEdNZMAinKm4P8oF0oAy0A5Wu-iNv8qBnR6FfzChI1mVG-F9VxvhfVWWFPQWTgvXez7Tcw0LmQIH383a8jojdiWX-9ymF0-PAYdrceM1vmANulu8H-d-QEwspK2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1349471793</pqid></control><display><type>article</type><title>Fuzzy expert system for predicting pathological stage of prostate cancer</title><source>ScienceDirect Journals</source><creator>Castanho, M.J.P. ; Hernandes, F. ; De Ré, A.M. ; Rautenberg, S. ; Billis, A.</creator><creatorcontrib>Castanho, M.J.P. ; Hernandes, F. ; De Ré, A.M. ; Rautenberg, S. ; Billis, A.</creatorcontrib><description>► We model a system for predicting pathological stage of prostate cancer. ► We develop a hybrid system: a rule-based fuzzy system where a genetic algorithm is used to optimize the parameters. ► Performance of genetic-fuzzy system constructed, for the database used, show superior Partin tables. Prostate cancer is the second most common cancer among men, responsible for the loss of half a million lives each year worldwide, according to the World Health Organization. In prostate cancer, definitive therapy such as radical prostatectomy, is more effective when the cancer is organ-confined. The aim of this study is to investigate the performance of some fuzzy expert systems in the classification of patients with confined or non-confined cancer. To deal with the intrinsic uncertainty about the variables utilized to predict cancer stage, the developed approach is based on Fuzzy Set Theory. A fuzzy expert system was developed with the fuzzy rules and membership functions tuned by a genetic algorithm. As a result, the utilized approach reached better precision taking into account some correlated studies.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2012.07.046</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Animal tumors. Experimental tumors ; Applied sciences ; Artificial intelligence ; Biological and medical sciences ; Cancer ; Classification ; Computer science; control theory; systems ; Exact sciences and technology ; Experimental genital and mammary tumors ; Expert systems ; Fuzzy ; Fuzzy logic ; Fuzzy rule-based system ; Fuzzy set theory ; Genetic algorithm ; Medical sciences ; Prostate ; Prostate cancer ; Radicals ; Tumors</subject><ispartof>Expert systems with applications, 2013-02, Vol.40 (2), p.466-470</ispartof><rights>2012 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-5eb8135d3bb9cb8ff2a8443763e47b0ef7a1f76bc9a6aaef32a029c7dfd9a56e3</citedby><cites>FETCH-LOGICAL-c396t-5eb8135d3bb9cb8ff2a8443763e47b0ef7a1f76bc9a6aaef32a029c7dfd9a56e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27095843$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Castanho, M.J.P.</creatorcontrib><creatorcontrib>Hernandes, F.</creatorcontrib><creatorcontrib>De Ré, A.M.</creatorcontrib><creatorcontrib>Rautenberg, S.</creatorcontrib><creatorcontrib>Billis, A.</creatorcontrib><title>Fuzzy expert system for predicting pathological stage of prostate cancer</title><title>Expert systems with applications</title><description>► We model a system for predicting pathological stage of prostate cancer. ► We develop a hybrid system: a rule-based fuzzy system where a genetic algorithm is used to optimize the parameters. ► Performance of genetic-fuzzy system constructed, for the database used, show superior Partin tables. Prostate cancer is the second most common cancer among men, responsible for the loss of half a million lives each year worldwide, according to the World Health Organization. In prostate cancer, definitive therapy such as radical prostatectomy, is more effective when the cancer is organ-confined. The aim of this study is to investigate the performance of some fuzzy expert systems in the classification of patients with confined or non-confined cancer. To deal with the intrinsic uncertainty about the variables utilized to predict cancer stage, the developed approach is based on Fuzzy Set Theory. A fuzzy expert system was developed with the fuzzy rules and membership functions tuned by a genetic algorithm. As a result, the utilized approach reached better precision taking into account some correlated studies.</description><subject>Animal tumors. Experimental tumors</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Biological and medical sciences</subject><subject>Cancer</subject><subject>Classification</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Experimental genital and mammary tumors</subject><subject>Expert systems</subject><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>Fuzzy rule-based system</subject><subject>Fuzzy set theory</subject><subject>Genetic algorithm</subject><subject>Medical sciences</subject><subject>Prostate</subject><subject>Prostate cancer</subject><subject>Radicals</subject><subject>Tumors</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqF0MFKAzEQBuAgCtbqC3jai-Bl12STZjbgRcSqIHjRc8hmJzVl261JqtanN6XFo54yh3_-IR8h54xWjDJ5Na8wfpqqpqyuKFRUyAMyYg3wUoLih2RE1QRKwUAck5MY55QyoBRG5GG6_v7eFPi1wpCKuIkJF4UbQrEK2Hmb_HJWrEx6G_ph5q3pi5jMDIvB5cCQ54SFNUuL4ZQcOdNHPNu_Y_I6vXu5fSifnu8fb2-eSsuVTOUE24bxScfbVtm2ca42jRAcJEcBLUUHhjmQrVVGGoOO14bWykLnOmUmEvmYXO568_33NcakFz5a7HuzxGEdNZMAinKm4P8oF0oAy0A5Wu-iNv8qBnR6FfzChI1mVG-F9VxvhfVWWFPQWTgvXez7Tcw0LmQIH383a8jojdiWX-9ymF0-PAYdrceM1vmANulu8H-d-QEwspK2</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Castanho, M.J.P.</creator><creator>Hernandes, F.</creator><creator>De Ré, A.M.</creator><creator>Rautenberg, S.</creator><creator>Billis, A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130201</creationdate><title>Fuzzy expert system for predicting pathological stage of prostate cancer</title><author>Castanho, M.J.P. ; Hernandes, F. ; De Ré, A.M. ; Rautenberg, S. ; Billis, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-5eb8135d3bb9cb8ff2a8443763e47b0ef7a1f76bc9a6aaef32a029c7dfd9a56e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animal tumors. Experimental tumors</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Biological and medical sciences</topic><topic>Cancer</topic><topic>Classification</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Experimental genital and mammary tumors</topic><topic>Expert systems</topic><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>Fuzzy rule-based system</topic><topic>Fuzzy set theory</topic><topic>Genetic algorithm</topic><topic>Medical sciences</topic><topic>Prostate</topic><topic>Prostate cancer</topic><topic>Radicals</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castanho, M.J.P.</creatorcontrib><creatorcontrib>Hernandes, F.</creatorcontrib><creatorcontrib>De Ré, A.M.</creatorcontrib><creatorcontrib>Rautenberg, S.</creatorcontrib><creatorcontrib>Billis, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castanho, M.J.P.</au><au>Hernandes, F.</au><au>De Ré, A.M.</au><au>Rautenberg, S.</au><au>Billis, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy expert system for predicting pathological stage of prostate cancer</atitle><jtitle>Expert systems with applications</jtitle><date>2013-02-01</date><risdate>2013</risdate><volume>40</volume><issue>2</issue><spage>466</spage><epage>470</epage><pages>466-470</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>► We model a system for predicting pathological stage of prostate cancer. ► We develop a hybrid system: a rule-based fuzzy system where a genetic algorithm is used to optimize the parameters. ► Performance of genetic-fuzzy system constructed, for the database used, show superior Partin tables. Prostate cancer is the second most common cancer among men, responsible for the loss of half a million lives each year worldwide, according to the World Health Organization. In prostate cancer, definitive therapy such as radical prostatectomy, is more effective when the cancer is organ-confined. The aim of this study is to investigate the performance of some fuzzy expert systems in the classification of patients with confined or non-confined cancer. To deal with the intrinsic uncertainty about the variables utilized to predict cancer stage, the developed approach is based on Fuzzy Set Theory. A fuzzy expert system was developed with the fuzzy rules and membership functions tuned by a genetic algorithm. As a result, the utilized approach reached better precision taking into account some correlated studies.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2012.07.046</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2013-02, Vol.40 (2), p.466-470
issn 0957-4174
1873-6793
language eng
recordid cdi_proquest_miscellaneous_1677903197
source ScienceDirect Journals
subjects Animal tumors. Experimental tumors
Applied sciences
Artificial intelligence
Biological and medical sciences
Cancer
Classification
Computer science
control theory
systems
Exact sciences and technology
Experimental genital and mammary tumors
Expert systems
Fuzzy
Fuzzy logic
Fuzzy rule-based system
Fuzzy set theory
Genetic algorithm
Medical sciences
Prostate
Prostate cancer
Radicals
Tumors
title Fuzzy expert system for predicting pathological stage of prostate cancer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A21%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20expert%20system%20for%20predicting%20pathological%20stage%20of%20prostate%20cancer&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Castanho,%20M.J.P.&rft.date=2013-02-01&rft.volume=40&rft.issue=2&rft.spage=466&rft.epage=470&rft.pages=466-470&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2012.07.046&rft_dat=%3Cproquest_cross%3E1349471793%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c396t-5eb8135d3bb9cb8ff2a8443763e47b0ef7a1f76bc9a6aaef32a029c7dfd9a56e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1349471793&rft_id=info:pmid/&rfr_iscdi=true