Loading…
A Preisach approach to modeling partial phase transitions in the first order magnetocaloric material MnFe(P,As)
Magnetic refrigeration is an emerging technology that could provide energy efficient and environmentally friendly cooling. Magnetocaloric materials in which a structural phase transition is found concurrently with the magnetic phase transition are often termed first order magnetocaloric materials. S...
Saved in:
Published in: | Physica. B, Condensed matter Condensed matter, 2014-02, Vol.435, p.144-147 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c369t-38fdf856ea3307cd08db02023ef4fefa2751d63823dde3b4cf0a8c33fd3e53dc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c369t-38fdf856ea3307cd08db02023ef4fefa2751d63823dde3b4cf0a8c33fd3e53dc3 |
container_end_page | 147 |
container_issue | |
container_start_page | 144 |
container_title | Physica. B, Condensed matter |
container_volume | 435 |
creator | von Moos, L. Bahl, C.R.H. Nielsen, K.K. Engelbrecht, K. Küpferling, M. Basso, V. |
description | Magnetic refrigeration is an emerging technology that could provide energy efficient and environmentally friendly cooling. Magnetocaloric materials in which a structural phase transition is found concurrently with the magnetic phase transition are often termed first order magnetocaloric materials. Such materials are potential candidates for application in magnetic refrigeration devices. However, the first order materials often have adverse properties such as hysteresis, making actual performance troublesome to quantify, a subject not thoroughly studied within this field.
Here we investigate the behavior of MnFe(P,As) under partial phase transitions, which is similar to what materials experience in actual magnetic refrigeration devices. Partial phase transition curves, in the absence of a magnetic field, are measured using calorimetry and the experimental results are compared to simulations of a Preisach-type model. We show that this approach is applicable and discuss what experimental data is required to obtain a satisfactory material model. |
doi_str_mv | 10.1016/j.physb.2013.09.054 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677906849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921452613006054</els_id><sourcerecordid>1677906849</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-38fdf856ea3307cd08db02023ef4fefa2751d63823dde3b4cf0a8c33fd3e53dc3</originalsourceid><addsrcrecordid>eNqFkU1LAzEQhoMoWKu_wEuOFdw12dnPg4ciVoWKPeg5pMmkTdlu1iQV-u_dWs86l5mB9xkYHkKuOUs54-XdJu3X-7BMM8YhZU3KivyEjHhdQZJxKE7JiDUZT_IiK8_JRQgbNhSv-Ii4KV14tEGqNZV9791hiI5uncbWdivaSx-tbGm_lgFp9LILNlrXBWo7GtdIjfUhUuc1erqVqw6jU7J13qphjegP8Gs3w8nidhpuLsmZkW3Aq98-Jh-zx_eH52T-9vTyMJ0nCsomJlAbbeqiRAnAKqVZrZcsYxmgyQ0amVUF1yXUGWiNsMyVYbJWAEYDFqAVjMnkeHd46XOHIYqtDQrbVnbodkHwsqoaVtZ583-0yHmeQ8HKIQrHqPIuBI9G9N5upd8LzsTBhNiIHxPiYEKwRgwmBur-SOHw8JdFL4Ky2CnU1qOKQjv7J_8N3DiUNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1541443506</pqid></control><display><type>article</type><title>A Preisach approach to modeling partial phase transitions in the first order magnetocaloric material MnFe(P,As)</title><source>Elsevier</source><creator>von Moos, L. ; Bahl, C.R.H. ; Nielsen, K.K. ; Engelbrecht, K. ; Küpferling, M. ; Basso, V.</creator><creatorcontrib>von Moos, L. ; Bahl, C.R.H. ; Nielsen, K.K. ; Engelbrecht, K. ; Küpferling, M. ; Basso, V.</creatorcontrib><description>Magnetic refrigeration is an emerging technology that could provide energy efficient and environmentally friendly cooling. Magnetocaloric materials in which a structural phase transition is found concurrently with the magnetic phase transition are often termed first order magnetocaloric materials. Such materials are potential candidates for application in magnetic refrigeration devices. However, the first order materials often have adverse properties such as hysteresis, making actual performance troublesome to quantify, a subject not thoroughly studied within this field.
Here we investigate the behavior of MnFe(P,As) under partial phase transitions, which is similar to what materials experience in actual magnetic refrigeration devices. Partial phase transition curves, in the absence of a magnetic field, are measured using calorimetry and the experimental results are compared to simulations of a Preisach-type model. We show that this approach is applicable and discuss what experimental data is required to obtain a satisfactory material model.</description><identifier>ISSN: 0921-4526</identifier><identifier>EISSN: 1873-2135</identifier><identifier>DOI: 10.1016/j.physb.2013.09.054</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Calorimetry ; Computer simulation ; Condensed matter ; Devices ; First order material ; Hysteresis ; Magnetic fields ; Magnetic refrigeration ; Magnetocaloric effect ; MnFePAs ; Phase transformations ; Preisach ; Refrigeration</subject><ispartof>Physica. B, Condensed matter, 2014-02, Vol.435, p.144-147</ispartof><rights>2013 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-38fdf856ea3307cd08db02023ef4fefa2751d63823dde3b4cf0a8c33fd3e53dc3</citedby><cites>FETCH-LOGICAL-c369t-38fdf856ea3307cd08db02023ef4fefa2751d63823dde3b4cf0a8c33fd3e53dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>von Moos, L.</creatorcontrib><creatorcontrib>Bahl, C.R.H.</creatorcontrib><creatorcontrib>Nielsen, K.K.</creatorcontrib><creatorcontrib>Engelbrecht, K.</creatorcontrib><creatorcontrib>Küpferling, M.</creatorcontrib><creatorcontrib>Basso, V.</creatorcontrib><title>A Preisach approach to modeling partial phase transitions in the first order magnetocaloric material MnFe(P,As)</title><title>Physica. B, Condensed matter</title><description>Magnetic refrigeration is an emerging technology that could provide energy efficient and environmentally friendly cooling. Magnetocaloric materials in which a structural phase transition is found concurrently with the magnetic phase transition are often termed first order magnetocaloric materials. Such materials are potential candidates for application in magnetic refrigeration devices. However, the first order materials often have adverse properties such as hysteresis, making actual performance troublesome to quantify, a subject not thoroughly studied within this field.
Here we investigate the behavior of MnFe(P,As) under partial phase transitions, which is similar to what materials experience in actual magnetic refrigeration devices. Partial phase transition curves, in the absence of a magnetic field, are measured using calorimetry and the experimental results are compared to simulations of a Preisach-type model. We show that this approach is applicable and discuss what experimental data is required to obtain a satisfactory material model.</description><subject>Calorimetry</subject><subject>Computer simulation</subject><subject>Condensed matter</subject><subject>Devices</subject><subject>First order material</subject><subject>Hysteresis</subject><subject>Magnetic fields</subject><subject>Magnetic refrigeration</subject><subject>Magnetocaloric effect</subject><subject>MnFePAs</subject><subject>Phase transformations</subject><subject>Preisach</subject><subject>Refrigeration</subject><issn>0921-4526</issn><issn>1873-2135</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkU1LAzEQhoMoWKu_wEuOFdw12dnPg4ciVoWKPeg5pMmkTdlu1iQV-u_dWs86l5mB9xkYHkKuOUs54-XdJu3X-7BMM8YhZU3KivyEjHhdQZJxKE7JiDUZT_IiK8_JRQgbNhSv-Ii4KV14tEGqNZV9791hiI5uncbWdivaSx-tbGm_lgFp9LILNlrXBWo7GtdIjfUhUuc1erqVqw6jU7J13qphjegP8Gs3w8nidhpuLsmZkW3Aq98-Jh-zx_eH52T-9vTyMJ0nCsomJlAbbeqiRAnAKqVZrZcsYxmgyQ0amVUF1yXUGWiNsMyVYbJWAEYDFqAVjMnkeHd46XOHIYqtDQrbVnbodkHwsqoaVtZ583-0yHmeQ8HKIQrHqPIuBI9G9N5upd8LzsTBhNiIHxPiYEKwRgwmBur-SOHw8JdFL4Ky2CnU1qOKQjv7J_8N3DiUNg</recordid><startdate>20140215</startdate><enddate>20140215</enddate><creator>von Moos, L.</creator><creator>Bahl, C.R.H.</creator><creator>Nielsen, K.K.</creator><creator>Engelbrecht, K.</creator><creator>Küpferling, M.</creator><creator>Basso, V.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20140215</creationdate><title>A Preisach approach to modeling partial phase transitions in the first order magnetocaloric material MnFe(P,As)</title><author>von Moos, L. ; Bahl, C.R.H. ; Nielsen, K.K. ; Engelbrecht, K. ; Küpferling, M. ; Basso, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-38fdf856ea3307cd08db02023ef4fefa2751d63823dde3b4cf0a8c33fd3e53dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Calorimetry</topic><topic>Computer simulation</topic><topic>Condensed matter</topic><topic>Devices</topic><topic>First order material</topic><topic>Hysteresis</topic><topic>Magnetic fields</topic><topic>Magnetic refrigeration</topic><topic>Magnetocaloric effect</topic><topic>MnFePAs</topic><topic>Phase transformations</topic><topic>Preisach</topic><topic>Refrigeration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>von Moos, L.</creatorcontrib><creatorcontrib>Bahl, C.R.H.</creatorcontrib><creatorcontrib>Nielsen, K.K.</creatorcontrib><creatorcontrib>Engelbrecht, K.</creatorcontrib><creatorcontrib>Küpferling, M.</creatorcontrib><creatorcontrib>Basso, V.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica. B, Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>von Moos, L.</au><au>Bahl, C.R.H.</au><au>Nielsen, K.K.</au><au>Engelbrecht, K.</au><au>Küpferling, M.</au><au>Basso, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Preisach approach to modeling partial phase transitions in the first order magnetocaloric material MnFe(P,As)</atitle><jtitle>Physica. B, Condensed matter</jtitle><date>2014-02-15</date><risdate>2014</risdate><volume>435</volume><spage>144</spage><epage>147</epage><pages>144-147</pages><issn>0921-4526</issn><eissn>1873-2135</eissn><abstract>Magnetic refrigeration is an emerging technology that could provide energy efficient and environmentally friendly cooling. Magnetocaloric materials in which a structural phase transition is found concurrently with the magnetic phase transition are often termed first order magnetocaloric materials. Such materials are potential candidates for application in magnetic refrigeration devices. However, the first order materials often have adverse properties such as hysteresis, making actual performance troublesome to quantify, a subject not thoroughly studied within this field.
Here we investigate the behavior of MnFe(P,As) under partial phase transitions, which is similar to what materials experience in actual magnetic refrigeration devices. Partial phase transition curves, in the absence of a magnetic field, are measured using calorimetry and the experimental results are compared to simulations of a Preisach-type model. We show that this approach is applicable and discuss what experimental data is required to obtain a satisfactory material model.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.physb.2013.09.054</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-4526 |
ispartof | Physica. B, Condensed matter, 2014-02, Vol.435, p.144-147 |
issn | 0921-4526 1873-2135 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677906849 |
source | Elsevier |
subjects | Calorimetry Computer simulation Condensed matter Devices First order material Hysteresis Magnetic fields Magnetic refrigeration Magnetocaloric effect MnFePAs Phase transformations Preisach Refrigeration |
title | A Preisach approach to modeling partial phase transitions in the first order magnetocaloric material MnFe(P,As) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A16%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Preisach%20approach%20to%20modeling%20partial%20phase%20transitions%20in%20the%20first%20order%20magnetocaloric%20material%20MnFe(P,As)&rft.jtitle=Physica.%20B,%20Condensed%20matter&rft.au=von%20Moos,%20L.&rft.date=2014-02-15&rft.volume=435&rft.spage=144&rft.epage=147&rft.pages=144-147&rft.issn=0921-4526&rft.eissn=1873-2135&rft_id=info:doi/10.1016/j.physb.2013.09.054&rft_dat=%3Cproquest_cross%3E1677906849%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c369t-38fdf856ea3307cd08db02023ef4fefa2751d63823dde3b4cf0a8c33fd3e53dc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1541443506&rft_id=info:pmid/&rfr_iscdi=true |