Loading…

A Preisach approach to modeling partial phase transitions in the first order magnetocaloric material MnFe(P,As)

Magnetic refrigeration is an emerging technology that could provide energy efficient and environmentally friendly cooling. Magnetocaloric materials in which a structural phase transition is found concurrently with the magnetic phase transition are often termed first order magnetocaloric materials. S...

Full description

Saved in:
Bibliographic Details
Published in:Physica. B, Condensed matter Condensed matter, 2014-02, Vol.435, p.144-147
Main Authors: von Moos, L., Bahl, C.R.H., Nielsen, K.K., Engelbrecht, K., Küpferling, M., Basso, V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c369t-38fdf856ea3307cd08db02023ef4fefa2751d63823dde3b4cf0a8c33fd3e53dc3
cites cdi_FETCH-LOGICAL-c369t-38fdf856ea3307cd08db02023ef4fefa2751d63823dde3b4cf0a8c33fd3e53dc3
container_end_page 147
container_issue
container_start_page 144
container_title Physica. B, Condensed matter
container_volume 435
creator von Moos, L.
Bahl, C.R.H.
Nielsen, K.K.
Engelbrecht, K.
Küpferling, M.
Basso, V.
description Magnetic refrigeration is an emerging technology that could provide energy efficient and environmentally friendly cooling. Magnetocaloric materials in which a structural phase transition is found concurrently with the magnetic phase transition are often termed first order magnetocaloric materials. Such materials are potential candidates for application in magnetic refrigeration devices. However, the first order materials often have adverse properties such as hysteresis, making actual performance troublesome to quantify, a subject not thoroughly studied within this field. Here we investigate the behavior of MnFe(P,As) under partial phase transitions, which is similar to what materials experience in actual magnetic refrigeration devices. Partial phase transition curves, in the absence of a magnetic field, are measured using calorimetry and the experimental results are compared to simulations of a Preisach-type model. We show that this approach is applicable and discuss what experimental data is required to obtain a satisfactory material model.
doi_str_mv 10.1016/j.physb.2013.09.054
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677906849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921452613006054</els_id><sourcerecordid>1677906849</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-38fdf856ea3307cd08db02023ef4fefa2751d63823dde3b4cf0a8c33fd3e53dc3</originalsourceid><addsrcrecordid>eNqFkU1LAzEQhoMoWKu_wEuOFdw12dnPg4ciVoWKPeg5pMmkTdlu1iQV-u_dWs86l5mB9xkYHkKuOUs54-XdJu3X-7BMM8YhZU3KivyEjHhdQZJxKE7JiDUZT_IiK8_JRQgbNhSv-Ii4KV14tEGqNZV9791hiI5uncbWdivaSx-tbGm_lgFp9LILNlrXBWo7GtdIjfUhUuc1erqVqw6jU7J13qphjegP8Gs3w8nidhpuLsmZkW3Aq98-Jh-zx_eH52T-9vTyMJ0nCsomJlAbbeqiRAnAKqVZrZcsYxmgyQ0amVUF1yXUGWiNsMyVYbJWAEYDFqAVjMnkeHd46XOHIYqtDQrbVnbodkHwsqoaVtZ583-0yHmeQ8HKIQrHqPIuBI9G9N5upd8LzsTBhNiIHxPiYEKwRgwmBur-SOHw8JdFL4Ky2CnU1qOKQjv7J_8N3DiUNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1541443506</pqid></control><display><type>article</type><title>A Preisach approach to modeling partial phase transitions in the first order magnetocaloric material MnFe(P,As)</title><source>Elsevier</source><creator>von Moos, L. ; Bahl, C.R.H. ; Nielsen, K.K. ; Engelbrecht, K. ; Küpferling, M. ; Basso, V.</creator><creatorcontrib>von Moos, L. ; Bahl, C.R.H. ; Nielsen, K.K. ; Engelbrecht, K. ; Küpferling, M. ; Basso, V.</creatorcontrib><description>Magnetic refrigeration is an emerging technology that could provide energy efficient and environmentally friendly cooling. Magnetocaloric materials in which a structural phase transition is found concurrently with the magnetic phase transition are often termed first order magnetocaloric materials. Such materials are potential candidates for application in magnetic refrigeration devices. However, the first order materials often have adverse properties such as hysteresis, making actual performance troublesome to quantify, a subject not thoroughly studied within this field. Here we investigate the behavior of MnFe(P,As) under partial phase transitions, which is similar to what materials experience in actual magnetic refrigeration devices. Partial phase transition curves, in the absence of a magnetic field, are measured using calorimetry and the experimental results are compared to simulations of a Preisach-type model. We show that this approach is applicable and discuss what experimental data is required to obtain a satisfactory material model.</description><identifier>ISSN: 0921-4526</identifier><identifier>EISSN: 1873-2135</identifier><identifier>DOI: 10.1016/j.physb.2013.09.054</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Calorimetry ; Computer simulation ; Condensed matter ; Devices ; First order material ; Hysteresis ; Magnetic fields ; Magnetic refrigeration ; Magnetocaloric effect ; MnFePAs ; Phase transformations ; Preisach ; Refrigeration</subject><ispartof>Physica. B, Condensed matter, 2014-02, Vol.435, p.144-147</ispartof><rights>2013 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-38fdf856ea3307cd08db02023ef4fefa2751d63823dde3b4cf0a8c33fd3e53dc3</citedby><cites>FETCH-LOGICAL-c369t-38fdf856ea3307cd08db02023ef4fefa2751d63823dde3b4cf0a8c33fd3e53dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>von Moos, L.</creatorcontrib><creatorcontrib>Bahl, C.R.H.</creatorcontrib><creatorcontrib>Nielsen, K.K.</creatorcontrib><creatorcontrib>Engelbrecht, K.</creatorcontrib><creatorcontrib>Küpferling, M.</creatorcontrib><creatorcontrib>Basso, V.</creatorcontrib><title>A Preisach approach to modeling partial phase transitions in the first order magnetocaloric material MnFe(P,As)</title><title>Physica. B, Condensed matter</title><description>Magnetic refrigeration is an emerging technology that could provide energy efficient and environmentally friendly cooling. Magnetocaloric materials in which a structural phase transition is found concurrently with the magnetic phase transition are often termed first order magnetocaloric materials. Such materials are potential candidates for application in magnetic refrigeration devices. However, the first order materials often have adverse properties such as hysteresis, making actual performance troublesome to quantify, a subject not thoroughly studied within this field. Here we investigate the behavior of MnFe(P,As) under partial phase transitions, which is similar to what materials experience in actual magnetic refrigeration devices. Partial phase transition curves, in the absence of a magnetic field, are measured using calorimetry and the experimental results are compared to simulations of a Preisach-type model. We show that this approach is applicable and discuss what experimental data is required to obtain a satisfactory material model.</description><subject>Calorimetry</subject><subject>Computer simulation</subject><subject>Condensed matter</subject><subject>Devices</subject><subject>First order material</subject><subject>Hysteresis</subject><subject>Magnetic fields</subject><subject>Magnetic refrigeration</subject><subject>Magnetocaloric effect</subject><subject>MnFePAs</subject><subject>Phase transformations</subject><subject>Preisach</subject><subject>Refrigeration</subject><issn>0921-4526</issn><issn>1873-2135</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkU1LAzEQhoMoWKu_wEuOFdw12dnPg4ciVoWKPeg5pMmkTdlu1iQV-u_dWs86l5mB9xkYHkKuOUs54-XdJu3X-7BMM8YhZU3KivyEjHhdQZJxKE7JiDUZT_IiK8_JRQgbNhSv-Ii4KV14tEGqNZV9791hiI5uncbWdivaSx-tbGm_lgFp9LILNlrXBWo7GtdIjfUhUuc1erqVqw6jU7J13qphjegP8Gs3w8nidhpuLsmZkW3Aq98-Jh-zx_eH52T-9vTyMJ0nCsomJlAbbeqiRAnAKqVZrZcsYxmgyQ0amVUF1yXUGWiNsMyVYbJWAEYDFqAVjMnkeHd46XOHIYqtDQrbVnbodkHwsqoaVtZ583-0yHmeQ8HKIQrHqPIuBI9G9N5upd8LzsTBhNiIHxPiYEKwRgwmBur-SOHw8JdFL4Ky2CnU1qOKQjv7J_8N3DiUNg</recordid><startdate>20140215</startdate><enddate>20140215</enddate><creator>von Moos, L.</creator><creator>Bahl, C.R.H.</creator><creator>Nielsen, K.K.</creator><creator>Engelbrecht, K.</creator><creator>Küpferling, M.</creator><creator>Basso, V.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20140215</creationdate><title>A Preisach approach to modeling partial phase transitions in the first order magnetocaloric material MnFe(P,As)</title><author>von Moos, L. ; Bahl, C.R.H. ; Nielsen, K.K. ; Engelbrecht, K. ; Küpferling, M. ; Basso, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-38fdf856ea3307cd08db02023ef4fefa2751d63823dde3b4cf0a8c33fd3e53dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Calorimetry</topic><topic>Computer simulation</topic><topic>Condensed matter</topic><topic>Devices</topic><topic>First order material</topic><topic>Hysteresis</topic><topic>Magnetic fields</topic><topic>Magnetic refrigeration</topic><topic>Magnetocaloric effect</topic><topic>MnFePAs</topic><topic>Phase transformations</topic><topic>Preisach</topic><topic>Refrigeration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>von Moos, L.</creatorcontrib><creatorcontrib>Bahl, C.R.H.</creatorcontrib><creatorcontrib>Nielsen, K.K.</creatorcontrib><creatorcontrib>Engelbrecht, K.</creatorcontrib><creatorcontrib>Küpferling, M.</creatorcontrib><creatorcontrib>Basso, V.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica. B, Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>von Moos, L.</au><au>Bahl, C.R.H.</au><au>Nielsen, K.K.</au><au>Engelbrecht, K.</au><au>Küpferling, M.</au><au>Basso, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Preisach approach to modeling partial phase transitions in the first order magnetocaloric material MnFe(P,As)</atitle><jtitle>Physica. B, Condensed matter</jtitle><date>2014-02-15</date><risdate>2014</risdate><volume>435</volume><spage>144</spage><epage>147</epage><pages>144-147</pages><issn>0921-4526</issn><eissn>1873-2135</eissn><abstract>Magnetic refrigeration is an emerging technology that could provide energy efficient and environmentally friendly cooling. Magnetocaloric materials in which a structural phase transition is found concurrently with the magnetic phase transition are often termed first order magnetocaloric materials. Such materials are potential candidates for application in magnetic refrigeration devices. However, the first order materials often have adverse properties such as hysteresis, making actual performance troublesome to quantify, a subject not thoroughly studied within this field. Here we investigate the behavior of MnFe(P,As) under partial phase transitions, which is similar to what materials experience in actual magnetic refrigeration devices. Partial phase transition curves, in the absence of a magnetic field, are measured using calorimetry and the experimental results are compared to simulations of a Preisach-type model. We show that this approach is applicable and discuss what experimental data is required to obtain a satisfactory material model.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.physb.2013.09.054</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-4526
ispartof Physica. B, Condensed matter, 2014-02, Vol.435, p.144-147
issn 0921-4526
1873-2135
language eng
recordid cdi_proquest_miscellaneous_1677906849
source Elsevier
subjects Calorimetry
Computer simulation
Condensed matter
Devices
First order material
Hysteresis
Magnetic fields
Magnetic refrigeration
Magnetocaloric effect
MnFePAs
Phase transformations
Preisach
Refrigeration
title A Preisach approach to modeling partial phase transitions in the first order magnetocaloric material MnFe(P,As)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A16%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Preisach%20approach%20to%20modeling%20partial%20phase%20transitions%20in%20the%20first%20order%20magnetocaloric%20material%20MnFe(P,As)&rft.jtitle=Physica.%20B,%20Condensed%20matter&rft.au=von%20Moos,%20L.&rft.date=2014-02-15&rft.volume=435&rft.spage=144&rft.epage=147&rft.pages=144-147&rft.issn=0921-4526&rft.eissn=1873-2135&rft_id=info:doi/10.1016/j.physb.2013.09.054&rft_dat=%3Cproquest_cross%3E1677906849%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c369t-38fdf856ea3307cd08db02023ef4fefa2751d63823dde3b4cf0a8c33fd3e53dc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1541443506&rft_id=info:pmid/&rfr_iscdi=true