Loading…
Pattern recognition by wavelet transforms using macro fibre composites transducers
This paper presents a novel pattern recognition approach for a non-destructive test based on macro fibre composite transducers applied in pipes. A fault detection and diagnosis (FDD) method is employed to extract relevant information from ultrasound signals by wavelet decomposition technique. The wa...
Saved in:
Published in: | Mechanical systems and signal processing 2014-10, Vol.48 (1-2), p.339-350 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c414t-ed0772e005229fc17ef409fabe99fc46a0797d4a99bbb206cc0c9bd449f3bba13 |
---|---|
cites | cdi_FETCH-LOGICAL-c414t-ed0772e005229fc17ef409fabe99fc46a0797d4a99bbb206cc0c9bd449f3bba13 |
container_end_page | 350 |
container_issue | 1-2 |
container_start_page | 339 |
container_title | Mechanical systems and signal processing |
container_volume | 48 |
creator | Ruiz de la Hermosa González-Carrato, Raúl García Márquez, Fausto Pedro Dimlaye, Vichaar Ruiz-Hernández, Diego |
description | This paper presents a novel pattern recognition approach for a non-destructive test based on macro fibre composite transducers applied in pipes. A fault detection and diagnosis (FDD) method is employed to extract relevant information from ultrasound signals by wavelet decomposition technique. The wavelet transform is a powerful tool that reveals particular characteristics as trends or breakdown points. The FDD developed for the case study provides information about the temperatures on the surfaces of the pipe, leading to monitor faults associated with cracks, leaks or corrosion. This issue may not be noticeable when temperatures are not subject to sudden changes, but it can cause structural problems in the medium and long-term. Furthermore, the case study is completed by a statistical method based on the coefficient of determination. The main purpose will be to predict future behaviours in order to set alarm levels as a part of a structural health monitoring system.
•Sensors based methodology with easy placement in complex surfaces.•Use of a technique (wavelet methodology) that is able to work at different frequencies and for all types of signals.•Sensitive pattern recognition for signals of low variability.•Successful results for up to the 94% of the cases studied. |
doi_str_mv | 10.1016/j.ymssp.2014.04.002 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677911594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888327014001022</els_id><sourcerecordid>1677911594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-ed0772e005229fc17ef409fabe99fc46a0797d4a99bbb206cc0c9bd449f3bba13</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKu_wMsevWydZNNNc_Ag4hcIiug5JNlZSeluaiZV-u-N1rPCC8PA8w7Mw9gphxkH3p4vZ9uBaD0TwOUMSkDssQkH3dZc8HafTWCxWNSNUHDIjoiWAKAltBP2_GRzxjRWCX18G0MOcazctvq0H7jCXOVkR-pjGqjaUBjfqsH6FKs-uISVj8M6UshIO67beEx0zA56uyI8-Z1T9npz_XJ1Vz883t5fXT7UXnKZa-xAKYEAcyF077nCXoLurUNdVtlaUFp10mrtnBPQeg9eu05K3TfOWd5M2dnu7jrF9w1SNkMgj6uVHTFuyPBWKc35XMv_0Xmriq1moQva7NDyJlHC3qxTGGzaGg7mW7ZZmh_Z5lu2gRIQpXWxa2F5-CNgMuQDjh67UMRm08XwZ_8LrIuLUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1567109389</pqid></control><display><type>article</type><title>Pattern recognition by wavelet transforms using macro fibre composites transducers</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Ruiz de la Hermosa González-Carrato, Raúl ; García Márquez, Fausto Pedro ; Dimlaye, Vichaar ; Ruiz-Hernández, Diego</creator><creatorcontrib>Ruiz de la Hermosa González-Carrato, Raúl ; García Márquez, Fausto Pedro ; Dimlaye, Vichaar ; Ruiz-Hernández, Diego</creatorcontrib><description>This paper presents a novel pattern recognition approach for a non-destructive test based on macro fibre composite transducers applied in pipes. A fault detection and diagnosis (FDD) method is employed to extract relevant information from ultrasound signals by wavelet decomposition technique. The wavelet transform is a powerful tool that reveals particular characteristics as trends or breakdown points. The FDD developed for the case study provides information about the temperatures on the surfaces of the pipe, leading to monitor faults associated with cracks, leaks or corrosion. This issue may not be noticeable when temperatures are not subject to sudden changes, but it can cause structural problems in the medium and long-term. Furthermore, the case study is completed by a statistical method based on the coefficient of determination. The main purpose will be to predict future behaviours in order to set alarm levels as a part of a structural health monitoring system.
•Sensors based methodology with easy placement in complex surfaces.•Use of a technique (wavelet methodology) that is able to work at different frequencies and for all types of signals.•Sensitive pattern recognition for signals of low variability.•Successful results for up to the 94% of the cases studied.</description><identifier>ISSN: 0888-3270</identifier><identifier>EISSN: 1096-1216</identifier><identifier>DOI: 10.1016/j.ymssp.2014.04.002</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Cracks ; Fiber composites ; Macro fibre composite transducers ; Maintenance management ; Pattern recognition ; Pipe ; Statistical methods ; Transducers ; Wavelet transform ; Wavelet transforms</subject><ispartof>Mechanical systems and signal processing, 2014-10, Vol.48 (1-2), p.339-350</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-ed0772e005229fc17ef409fabe99fc46a0797d4a99bbb206cc0c9bd449f3bba13</citedby><cites>FETCH-LOGICAL-c414t-ed0772e005229fc17ef409fabe99fc46a0797d4a99bbb206cc0c9bd449f3bba13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ruiz de la Hermosa González-Carrato, Raúl</creatorcontrib><creatorcontrib>García Márquez, Fausto Pedro</creatorcontrib><creatorcontrib>Dimlaye, Vichaar</creatorcontrib><creatorcontrib>Ruiz-Hernández, Diego</creatorcontrib><title>Pattern recognition by wavelet transforms using macro fibre composites transducers</title><title>Mechanical systems and signal processing</title><description>This paper presents a novel pattern recognition approach for a non-destructive test based on macro fibre composite transducers applied in pipes. A fault detection and diagnosis (FDD) method is employed to extract relevant information from ultrasound signals by wavelet decomposition technique. The wavelet transform is a powerful tool that reveals particular characteristics as trends or breakdown points. The FDD developed for the case study provides information about the temperatures on the surfaces of the pipe, leading to monitor faults associated with cracks, leaks or corrosion. This issue may not be noticeable when temperatures are not subject to sudden changes, but it can cause structural problems in the medium and long-term. Furthermore, the case study is completed by a statistical method based on the coefficient of determination. The main purpose will be to predict future behaviours in order to set alarm levels as a part of a structural health monitoring system.
•Sensors based methodology with easy placement in complex surfaces.•Use of a technique (wavelet methodology) that is able to work at different frequencies and for all types of signals.•Sensitive pattern recognition for signals of low variability.•Successful results for up to the 94% of the cases studied.</description><subject>Cracks</subject><subject>Fiber composites</subject><subject>Macro fibre composite transducers</subject><subject>Maintenance management</subject><subject>Pattern recognition</subject><subject>Pipe</subject><subject>Statistical methods</subject><subject>Transducers</subject><subject>Wavelet transform</subject><subject>Wavelet transforms</subject><issn>0888-3270</issn><issn>1096-1216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKu_wMsevWydZNNNc_Ag4hcIiug5JNlZSeluaiZV-u-N1rPCC8PA8w7Mw9gphxkH3p4vZ9uBaD0TwOUMSkDssQkH3dZc8HafTWCxWNSNUHDIjoiWAKAltBP2_GRzxjRWCX18G0MOcazctvq0H7jCXOVkR-pjGqjaUBjfqsH6FKs-uISVj8M6UshIO67beEx0zA56uyI8-Z1T9npz_XJ1Vz883t5fXT7UXnKZa-xAKYEAcyF077nCXoLurUNdVtlaUFp10mrtnBPQeg9eu05K3TfOWd5M2dnu7jrF9w1SNkMgj6uVHTFuyPBWKc35XMv_0Xmriq1moQva7NDyJlHC3qxTGGzaGg7mW7ZZmh_Z5lu2gRIQpXWxa2F5-CNgMuQDjh67UMRm08XwZ_8LrIuLUg</recordid><startdate>20141003</startdate><enddate>20141003</enddate><creator>Ruiz de la Hermosa González-Carrato, Raúl</creator><creator>García Márquez, Fausto Pedro</creator><creator>Dimlaye, Vichaar</creator><creator>Ruiz-Hernández, Diego</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20141003</creationdate><title>Pattern recognition by wavelet transforms using macro fibre composites transducers</title><author>Ruiz de la Hermosa González-Carrato, Raúl ; García Márquez, Fausto Pedro ; Dimlaye, Vichaar ; Ruiz-Hernández, Diego</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-ed0772e005229fc17ef409fabe99fc46a0797d4a99bbb206cc0c9bd449f3bba13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Cracks</topic><topic>Fiber composites</topic><topic>Macro fibre composite transducers</topic><topic>Maintenance management</topic><topic>Pattern recognition</topic><topic>Pipe</topic><topic>Statistical methods</topic><topic>Transducers</topic><topic>Wavelet transform</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruiz de la Hermosa González-Carrato, Raúl</creatorcontrib><creatorcontrib>García Márquez, Fausto Pedro</creatorcontrib><creatorcontrib>Dimlaye, Vichaar</creatorcontrib><creatorcontrib>Ruiz-Hernández, Diego</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mechanical systems and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruiz de la Hermosa González-Carrato, Raúl</au><au>García Márquez, Fausto Pedro</au><au>Dimlaye, Vichaar</au><au>Ruiz-Hernández, Diego</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pattern recognition by wavelet transforms using macro fibre composites transducers</atitle><jtitle>Mechanical systems and signal processing</jtitle><date>2014-10-03</date><risdate>2014</risdate><volume>48</volume><issue>1-2</issue><spage>339</spage><epage>350</epage><pages>339-350</pages><issn>0888-3270</issn><eissn>1096-1216</eissn><abstract>This paper presents a novel pattern recognition approach for a non-destructive test based on macro fibre composite transducers applied in pipes. A fault detection and diagnosis (FDD) method is employed to extract relevant information from ultrasound signals by wavelet decomposition technique. The wavelet transform is a powerful tool that reveals particular characteristics as trends or breakdown points. The FDD developed for the case study provides information about the temperatures on the surfaces of the pipe, leading to monitor faults associated with cracks, leaks or corrosion. This issue may not be noticeable when temperatures are not subject to sudden changes, but it can cause structural problems in the medium and long-term. Furthermore, the case study is completed by a statistical method based on the coefficient of determination. The main purpose will be to predict future behaviours in order to set alarm levels as a part of a structural health monitoring system.
•Sensors based methodology with easy placement in complex surfaces.•Use of a technique (wavelet methodology) that is able to work at different frequencies and for all types of signals.•Sensitive pattern recognition for signals of low variability.•Successful results for up to the 94% of the cases studied.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ymssp.2014.04.002</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-3270 |
ispartof | Mechanical systems and signal processing, 2014-10, Vol.48 (1-2), p.339-350 |
issn | 0888-3270 1096-1216 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677911594 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Cracks Fiber composites Macro fibre composite transducers Maintenance management Pattern recognition Pipe Statistical methods Transducers Wavelet transform Wavelet transforms |
title | Pattern recognition by wavelet transforms using macro fibre composites transducers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A05%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pattern%20recognition%20by%20wavelet%20transforms%20using%20macro%20fibre%20composites%20transducers&rft.jtitle=Mechanical%20systems%20and%20signal%20processing&rft.au=Ruiz%20de%20la%20Hermosa%20Gonz%C3%A1lez-Carrato,%20Ra%C3%BAl&rft.date=2014-10-03&rft.volume=48&rft.issue=1-2&rft.spage=339&rft.epage=350&rft.pages=339-350&rft.issn=0888-3270&rft.eissn=1096-1216&rft_id=info:doi/10.1016/j.ymssp.2014.04.002&rft_dat=%3Cproquest_cross%3E1677911594%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c414t-ed0772e005229fc17ef409fabe99fc46a0797d4a99bbb206cc0c9bd449f3bba13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1567109389&rft_id=info:pmid/&rfr_iscdi=true |