Loading…

Pattern recognition by wavelet transforms using macro fibre composites transducers

This paper presents a novel pattern recognition approach for a non-destructive test based on macro fibre composite transducers applied in pipes. A fault detection and diagnosis (FDD) method is employed to extract relevant information from ultrasound signals by wavelet decomposition technique. The wa...

Full description

Saved in:
Bibliographic Details
Published in:Mechanical systems and signal processing 2014-10, Vol.48 (1-2), p.339-350
Main Authors: Ruiz de la Hermosa González-Carrato, Raúl, García Márquez, Fausto Pedro, Dimlaye, Vichaar, Ruiz-Hernández, Diego
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c414t-ed0772e005229fc17ef409fabe99fc46a0797d4a99bbb206cc0c9bd449f3bba13
cites cdi_FETCH-LOGICAL-c414t-ed0772e005229fc17ef409fabe99fc46a0797d4a99bbb206cc0c9bd449f3bba13
container_end_page 350
container_issue 1-2
container_start_page 339
container_title Mechanical systems and signal processing
container_volume 48
creator Ruiz de la Hermosa González-Carrato, Raúl
García Márquez, Fausto Pedro
Dimlaye, Vichaar
Ruiz-Hernández, Diego
description This paper presents a novel pattern recognition approach for a non-destructive test based on macro fibre composite transducers applied in pipes. A fault detection and diagnosis (FDD) method is employed to extract relevant information from ultrasound signals by wavelet decomposition technique. The wavelet transform is a powerful tool that reveals particular characteristics as trends or breakdown points. The FDD developed for the case study provides information about the temperatures on the surfaces of the pipe, leading to monitor faults associated with cracks, leaks or corrosion. This issue may not be noticeable when temperatures are not subject to sudden changes, but it can cause structural problems in the medium and long-term. Furthermore, the case study is completed by a statistical method based on the coefficient of determination. The main purpose will be to predict future behaviours in order to set alarm levels as a part of a structural health monitoring system. •Sensors based methodology with easy placement in complex surfaces.•Use of a technique (wavelet methodology) that is able to work at different frequencies and for all types of signals.•Sensitive pattern recognition for signals of low variability.•Successful results for up to the 94% of the cases studied.
doi_str_mv 10.1016/j.ymssp.2014.04.002
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677911594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888327014001022</els_id><sourcerecordid>1677911594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-ed0772e005229fc17ef409fabe99fc46a0797d4a99bbb206cc0c9bd449f3bba13</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKu_wMsevWydZNNNc_Ag4hcIiug5JNlZSeluaiZV-u-N1rPCC8PA8w7Mw9gphxkH3p4vZ9uBaD0TwOUMSkDssQkH3dZc8HafTWCxWNSNUHDIjoiWAKAltBP2_GRzxjRWCX18G0MOcazctvq0H7jCXOVkR-pjGqjaUBjfqsH6FKs-uISVj8M6UshIO67beEx0zA56uyI8-Z1T9npz_XJ1Vz883t5fXT7UXnKZa-xAKYEAcyF077nCXoLurUNdVtlaUFp10mrtnBPQeg9eu05K3TfOWd5M2dnu7jrF9w1SNkMgj6uVHTFuyPBWKc35XMv_0Xmriq1moQva7NDyJlHC3qxTGGzaGg7mW7ZZmh_Z5lu2gRIQpXWxa2F5-CNgMuQDjh67UMRm08XwZ_8LrIuLUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1567109389</pqid></control><display><type>article</type><title>Pattern recognition by wavelet transforms using macro fibre composites transducers</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Ruiz de la Hermosa González-Carrato, Raúl ; García Márquez, Fausto Pedro ; Dimlaye, Vichaar ; Ruiz-Hernández, Diego</creator><creatorcontrib>Ruiz de la Hermosa González-Carrato, Raúl ; García Márquez, Fausto Pedro ; Dimlaye, Vichaar ; Ruiz-Hernández, Diego</creatorcontrib><description>This paper presents a novel pattern recognition approach for a non-destructive test based on macro fibre composite transducers applied in pipes. A fault detection and diagnosis (FDD) method is employed to extract relevant information from ultrasound signals by wavelet decomposition technique. The wavelet transform is a powerful tool that reveals particular characteristics as trends or breakdown points. The FDD developed for the case study provides information about the temperatures on the surfaces of the pipe, leading to monitor faults associated with cracks, leaks or corrosion. This issue may not be noticeable when temperatures are not subject to sudden changes, but it can cause structural problems in the medium and long-term. Furthermore, the case study is completed by a statistical method based on the coefficient of determination. The main purpose will be to predict future behaviours in order to set alarm levels as a part of a structural health monitoring system. •Sensors based methodology with easy placement in complex surfaces.•Use of a technique (wavelet methodology) that is able to work at different frequencies and for all types of signals.•Sensitive pattern recognition for signals of low variability.•Successful results for up to the 94% of the cases studied.</description><identifier>ISSN: 0888-3270</identifier><identifier>EISSN: 1096-1216</identifier><identifier>DOI: 10.1016/j.ymssp.2014.04.002</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Cracks ; Fiber composites ; Macro fibre composite transducers ; Maintenance management ; Pattern recognition ; Pipe ; Statistical methods ; Transducers ; Wavelet transform ; Wavelet transforms</subject><ispartof>Mechanical systems and signal processing, 2014-10, Vol.48 (1-2), p.339-350</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-ed0772e005229fc17ef409fabe99fc46a0797d4a99bbb206cc0c9bd449f3bba13</citedby><cites>FETCH-LOGICAL-c414t-ed0772e005229fc17ef409fabe99fc46a0797d4a99bbb206cc0c9bd449f3bba13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ruiz de la Hermosa González-Carrato, Raúl</creatorcontrib><creatorcontrib>García Márquez, Fausto Pedro</creatorcontrib><creatorcontrib>Dimlaye, Vichaar</creatorcontrib><creatorcontrib>Ruiz-Hernández, Diego</creatorcontrib><title>Pattern recognition by wavelet transforms using macro fibre composites transducers</title><title>Mechanical systems and signal processing</title><description>This paper presents a novel pattern recognition approach for a non-destructive test based on macro fibre composite transducers applied in pipes. A fault detection and diagnosis (FDD) method is employed to extract relevant information from ultrasound signals by wavelet decomposition technique. The wavelet transform is a powerful tool that reveals particular characteristics as trends or breakdown points. The FDD developed for the case study provides information about the temperatures on the surfaces of the pipe, leading to monitor faults associated with cracks, leaks or corrosion. This issue may not be noticeable when temperatures are not subject to sudden changes, but it can cause structural problems in the medium and long-term. Furthermore, the case study is completed by a statistical method based on the coefficient of determination. The main purpose will be to predict future behaviours in order to set alarm levels as a part of a structural health monitoring system. •Sensors based methodology with easy placement in complex surfaces.•Use of a technique (wavelet methodology) that is able to work at different frequencies and for all types of signals.•Sensitive pattern recognition for signals of low variability.•Successful results for up to the 94% of the cases studied.</description><subject>Cracks</subject><subject>Fiber composites</subject><subject>Macro fibre composite transducers</subject><subject>Maintenance management</subject><subject>Pattern recognition</subject><subject>Pipe</subject><subject>Statistical methods</subject><subject>Transducers</subject><subject>Wavelet transform</subject><subject>Wavelet transforms</subject><issn>0888-3270</issn><issn>1096-1216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKu_wMsevWydZNNNc_Ag4hcIiug5JNlZSeluaiZV-u-N1rPCC8PA8w7Mw9gphxkH3p4vZ9uBaD0TwOUMSkDssQkH3dZc8HafTWCxWNSNUHDIjoiWAKAltBP2_GRzxjRWCX18G0MOcazctvq0H7jCXOVkR-pjGqjaUBjfqsH6FKs-uISVj8M6UshIO67beEx0zA56uyI8-Z1T9npz_XJ1Vz883t5fXT7UXnKZa-xAKYEAcyF077nCXoLurUNdVtlaUFp10mrtnBPQeg9eu05K3TfOWd5M2dnu7jrF9w1SNkMgj6uVHTFuyPBWKc35XMv_0Xmriq1moQva7NDyJlHC3qxTGGzaGg7mW7ZZmh_Z5lu2gRIQpXWxa2F5-CNgMuQDjh67UMRm08XwZ_8LrIuLUg</recordid><startdate>20141003</startdate><enddate>20141003</enddate><creator>Ruiz de la Hermosa González-Carrato, Raúl</creator><creator>García Márquez, Fausto Pedro</creator><creator>Dimlaye, Vichaar</creator><creator>Ruiz-Hernández, Diego</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20141003</creationdate><title>Pattern recognition by wavelet transforms using macro fibre composites transducers</title><author>Ruiz de la Hermosa González-Carrato, Raúl ; García Márquez, Fausto Pedro ; Dimlaye, Vichaar ; Ruiz-Hernández, Diego</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-ed0772e005229fc17ef409fabe99fc46a0797d4a99bbb206cc0c9bd449f3bba13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Cracks</topic><topic>Fiber composites</topic><topic>Macro fibre composite transducers</topic><topic>Maintenance management</topic><topic>Pattern recognition</topic><topic>Pipe</topic><topic>Statistical methods</topic><topic>Transducers</topic><topic>Wavelet transform</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruiz de la Hermosa González-Carrato, Raúl</creatorcontrib><creatorcontrib>García Márquez, Fausto Pedro</creatorcontrib><creatorcontrib>Dimlaye, Vichaar</creatorcontrib><creatorcontrib>Ruiz-Hernández, Diego</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mechanical systems and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruiz de la Hermosa González-Carrato, Raúl</au><au>García Márquez, Fausto Pedro</au><au>Dimlaye, Vichaar</au><au>Ruiz-Hernández, Diego</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pattern recognition by wavelet transforms using macro fibre composites transducers</atitle><jtitle>Mechanical systems and signal processing</jtitle><date>2014-10-03</date><risdate>2014</risdate><volume>48</volume><issue>1-2</issue><spage>339</spage><epage>350</epage><pages>339-350</pages><issn>0888-3270</issn><eissn>1096-1216</eissn><abstract>This paper presents a novel pattern recognition approach for a non-destructive test based on macro fibre composite transducers applied in pipes. A fault detection and diagnosis (FDD) method is employed to extract relevant information from ultrasound signals by wavelet decomposition technique. The wavelet transform is a powerful tool that reveals particular characteristics as trends or breakdown points. The FDD developed for the case study provides information about the temperatures on the surfaces of the pipe, leading to monitor faults associated with cracks, leaks or corrosion. This issue may not be noticeable when temperatures are not subject to sudden changes, but it can cause structural problems in the medium and long-term. Furthermore, the case study is completed by a statistical method based on the coefficient of determination. The main purpose will be to predict future behaviours in order to set alarm levels as a part of a structural health monitoring system. •Sensors based methodology with easy placement in complex surfaces.•Use of a technique (wavelet methodology) that is able to work at different frequencies and for all types of signals.•Sensitive pattern recognition for signals of low variability.•Successful results for up to the 94% of the cases studied.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ymssp.2014.04.002</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0888-3270
ispartof Mechanical systems and signal processing, 2014-10, Vol.48 (1-2), p.339-350
issn 0888-3270
1096-1216
language eng
recordid cdi_proquest_miscellaneous_1677911594
source ScienceDirect Freedom Collection 2022-2024
subjects Cracks
Fiber composites
Macro fibre composite transducers
Maintenance management
Pattern recognition
Pipe
Statistical methods
Transducers
Wavelet transform
Wavelet transforms
title Pattern recognition by wavelet transforms using macro fibre composites transducers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A05%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pattern%20recognition%20by%20wavelet%20transforms%20using%20macro%20fibre%20composites%20transducers&rft.jtitle=Mechanical%20systems%20and%20signal%20processing&rft.au=Ruiz%20de%20la%20Hermosa%20Gonz%C3%A1lez-Carrato,%20Ra%C3%BAl&rft.date=2014-10-03&rft.volume=48&rft.issue=1-2&rft.spage=339&rft.epage=350&rft.pages=339-350&rft.issn=0888-3270&rft.eissn=1096-1216&rft_id=info:doi/10.1016/j.ymssp.2014.04.002&rft_dat=%3Cproquest_cross%3E1677911594%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c414t-ed0772e005229fc17ef409fabe99fc46a0797d4a99bbb206cc0c9bd449f3bba13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1567109389&rft_id=info:pmid/&rfr_iscdi=true