Loading…
A Stochastic Hybrid Systems framework for analysis of Markov reward models
In this paper, we propose a framework to analyze Markov reward models, which are commonly used in system performability analysis. The framework builds on a set of analytical tools developed for a class of stochastic processes referred to as Stochastic Hybrid Systems (SHS). The state space of an SHS...
Saved in:
Published in: | Reliability engineering & system safety 2014-03, Vol.123, p.158-170 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we propose a framework to analyze Markov reward models, which are commonly used in system performability analysis. The framework builds on a set of analytical tools developed for a class of stochastic processes referred to as Stochastic Hybrid Systems (SHS). The state space of an SHS is comprised of: (i) a discrete state that describes the possible configurations/modes that a system can adopt, which includes the nominal (non-faulty) operational mode, but also those operational modes that arise due to component faults, and (ii) a continuous state that describes the reward. Discrete state transitions are stochastic, and governed by transition rates that are (in general) a function of time and the value of the continuous state. The evolution of the continuous state is described by a stochastic differential equation and reward measures are defined as functions of the continuous state. Additionally, each transition is associated with a reset map that defines the mapping between the pre- and post-transition values of the discrete and continuous states; these mappings enable the definition of impulses and losses in the reward. The proposed SHS-based framework unifies the analysis of a variety of previously studied reward models. We illustrate the application of the framework to performability analysis via analytical and numerical examples. |
---|---|
ISSN: | 0951-8320 1879-0836 |
DOI: | 10.1016/j.ress.2013.10.011 |