Loading…

A review of conductor performance for the LARP high-gradient quadrupole magnets

We summarize critical current measurements and parameterizations of the data of 112 round wires and extracted strands that were reacted with the first 17 coils for the high-gradient quadrupole (HQ) magnets for the US LHC Accelerator Research Program (LARP). We standardize the strand parameterization...

Full description

Saved in:
Bibliographic Details
Published in:Superconductor science & technology 2013-09, Vol.26 (9), p.95015-15
Main Authors: Godeke, A, Chlachidze, G, Dietderich, D R, Ghosh, A K, Marchevsky, M, Mentink, M G T, Sabbi, G L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We summarize critical current measurements and parameterizations of the data of 112 round wires and extracted strands that were reacted with the first 17 coils for the high-gradient quadrupole (HQ) magnets for the US LHC Accelerator Research Program (LARP). We standardize the strand parameterizations and coil 'short sample' calculations, and demonstrate that the entire critical current database can be captured in two scaling parameters per coil. These parameters summarize the short sample performance for each coil for either HQ magnet tests, or mirror tests of individual coils. We also demonstrate that for RRP® conductors, generic strain scaling parameters can be derived for at least four substantially different wire configurations, and standardize self-field corrections for LARP. The parameterized conductor performance is used to judge the performance of the HQ magnets and mirror tests. We find that although the HQ magnets reach around 86% of their short sample limitations, they are limited by factors other than the critical current of the conductor. Individual coils in mirror tests reach up to 98% of the expected performance, and do appear limited by the critical current of the conductor. Detailed analysis of short sample performance through accurate parameterizations simplifies the accessibility of short sample data, and enables accurate judgment of magnet performance as well as conductor and cable quality.
ISSN:0953-2048
1361-6668
DOI:10.1088/0953-2048/26/9/095015