Loading…
Controlled synthesis and synergistic effects of graphene-supported PdAu bimetallic nanoparticles with tunable catalytic properties
Graphene-supported bimetallic nanoparticles are promising nanocatalysts, which can show strong and tunable catalytic activity and selectivity. Herein room-temperature-ionic-liquid-assisted metal sputtering is utilized to synthesize PdAu bimetallic nanoparticles on graphene with bare surface, small s...
Saved in:
Published in: | Nanoscale 2015-04, Vol.7 (14), p.6356-6362 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Graphene-supported bimetallic nanoparticles are promising nanocatalysts, which can show strong and tunable catalytic activity and selectivity. Herein room-temperature-ionic-liquid-assisted metal sputtering is utilized to synthesize PdAu bimetallic nanoparticles on graphene with bare surface, small size, high surface density and controlled Pd-to-Au ratio. This controllable synthetic approach is green-chemistry compatible and totally free of additives and byproducts. The supported PdAu nanoparticles show excellent catalytic capabilities for both oxidation and reduction reactions, strongly dependent on the Pd-to-Au ratio. A strong correlation among catalytic performance, bimetallic composition and charge redistribution in the PdAu nanoparticles has been demonstrated. The results suggest that sufficient Au d-holes appear to be significant to the catalysis of oxidation reaction, and a metallic Pd surface is critical to the catalysis of reduction reaction. By the present method, the bimetallic combination can be tailored for distinct types of catalytic reactions. |
---|---|
ISSN: | 2040-3364 2040-3372 |
DOI: | 10.1039/c4nr06855f |