Loading…

MarcoPolo-R: Near Earth Asteroid Sample Return Mission candidate as ESA-M3 class mission

MarcoPolo-R is a sample return mission to a primitive Near-Earth Asteroid (NEA) selected in February 2011 for the Assessment Study Phase at ESA in the framework of ESAfs Cosmic Vision 2 program. MarcoPolo-R is a European-led mission with a proposed NASA contribution. MarcoPolo-R takes advantage of t...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the International Astronomical Union 2012-08, Vol.10 (H16), p.163-163
Main Authors: Michel, Patrick, Lara, Luisa-M., Marty, Bernard, Koschny, Detlef, Barucci, Maria Antonietta, Cheng, Andy, Bohnhardt, Hermann, Brucato, John R., Dotto, Elisabetta, Ehrenfreund, Pascale, Franchi, Ian A., Green, Simon F.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:MarcoPolo-R is a sample return mission to a primitive Near-Earth Asteroid (NEA) selected in February 2011 for the Assessment Study Phase at ESA in the framework of ESAfs Cosmic Vision 2 program. MarcoPolo-R is a European-led mission with a proposed NASA contribution. MarcoPolo-R takes advantage of three industrial studies completed as part of the previous Marco Polo mission (see ESA/SRE (2009)3). The aim of the new Assessment Study is to reduce the cost of the mission while maintaining its high science level, on the basis of advanced studies and technologies, as well as optimization of the mission. MarcoPolo-R will rendezvous with a unique kind of target, a primitive binary NEA, scientifically characterize it at multiple scales, and return a unique pristine sample to Earth unaltered by the atmospheric entry process or terrestrial weathering. The baseline target of MarcoPolo-R is the primitive binary NEA (175706) 1996 FG3, which offers a very efficient operational and technical mission profile. A binary target also provides enhanced science return: the choice of this target will allow new investigations to be performed more easily compared to a single object, and also enables investigations of the fascinating geology and geophysics of asteroids that are impossible to obtain from a single object. Precise measurements of the mutual orbit and rotation state of both components can be used to probe higher-level harmonics of the gravitational potential, and therefore the internal structure. A unique opportunity is offered to study the dynamical evolution driven by the YORP/Yarkovsky thermal effects. Possible migration of regolith on the primary from poles to equator allows the increasing maturity of asteroidal regolith with time to be expressed as a latitude-dependent trend, with the most-weathered material at the equator matching what is seen in the secondary. MarcoPolo-R will allow us to study the most primitive materials available to investigate early solar system formation processes. Moreover, MarcoPolo-R will provide a sample from a known target with known geological context. Direct investigation of both the regolith and fresh interior fragments is also impossible by any means other than sample return. The main goal of the MarcoPolo-R mission is to return unaltered NEA material for detailed analysis in ground-based laboratories. The limited sampling provided by meteorites does not offer the most primitive material available in near-Earth space. More primitiv
ISSN:1743-9213
1743-9221
DOI:10.1017/S1743921314005183