Loading…

Theoretical and Experimental Studies on Blast Wave Propagation in Air

High pressure and temperature are produced when high explosives are detonated in open air. The heat of detonation of the explosive compound, peak pressure, and temperature of the blast wave are important blast parameters. A blast wave generated due to explosion propagates into the air medium at supe...

Full description

Saved in:
Bibliographic Details
Published in:Propellants, explosives, pyrotechnics explosives, pyrotechnics, 2015-02, Vol.40 (1), p.138-143
Main Authors: DharmaRao, Vedula, SrinivasKumar, Adapaka, VenkateswaraRao, Kadiyam, KrishnaPrasad, Veerapaneni S R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:High pressure and temperature are produced when high explosives are detonated in open air. The heat of detonation of the explosive compound, peak pressure, and temperature of the blast wave are important blast parameters. A blast wave generated due to explosion propagates into the air medium at supersonic speed until the pressure in the blast zone is released completely. The intensity of the impact by the blast wave on any intervening solid object depends on the blast parameters and the speed of propagation of the blast wave. A theoretical analysis is carried out to predict the pressure produced in the expanding blast zone as function of distance and time by analytically solving the governing equations. The initial peak pressure and temperature of blast wave, which are required in the theoretical analysis, were calculated making use of the blast wave theory. For comparison, experiments were conducted by detonating different weights of high explosives, and pressures were recorded at various distances from the blast point. The high explosives used in the experiments were TNT (0.045, 0.5, 1, 15, and 40 kg) and Composition B (0.045, 0.5, 1, and 15 kg). The theoretical results are validated by comparison with the experimental data and empirical equations available in literature.
ISSN:0721-3115
1521-4087
DOI:10.1002/prep.201400042