Loading…

Formability and mechanical properties of porous titanium produced by a moldless process

Tailor‐made porous titanium implants show great promise in both orthopedic and dental applications. However, traditional powder metallurgical processes require a high‐cost mold, making them economically unviable for producing unique devices. In this study, a mixture of titanium powder and an inlay w...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2013-08, Vol.101B (6), p.1090-1094
Main Authors: Naito, Yoshihito, Bae, Jiyoung, Tomotake, Yoritoki, Hamada, Kenichi, Asaoka, Kenzo, Ichikawa, Tetsuo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5689-1ef112d54d4034ecd991622904d7e46ad8406430df199d5a234c70887d99c15a3
cites cdi_FETCH-LOGICAL-c5689-1ef112d54d4034ecd991622904d7e46ad8406430df199d5a234c70887d99c15a3
container_end_page 1094
container_issue 6
container_start_page 1090
container_title Journal of biomedical materials research. Part B, Applied biomaterials
container_volume 101B
creator Naito, Yoshihito
Bae, Jiyoung
Tomotake, Yoritoki
Hamada, Kenichi
Asaoka, Kenzo
Ichikawa, Tetsuo
description Tailor‐made porous titanium implants show great promise in both orthopedic and dental applications. However, traditional powder metallurgical processes require a high‐cost mold, making them economically unviable for producing unique devices. In this study, a mixture of titanium powder and an inlay wax binder was developed for moldless forming and sintering. The formability of the mixture, the dimensional changes after sintering, and the physical and mechanical properties of the sintered porous titanium were evaluated. A 90:10 wt % mixture of Ti powder and wax binder was created manually at 70°C. After debindering, the specimen was sintered in Ar at 1100°C without any mold for 1, 5, and 10 h. The shrinkage, porosity, absorption ratio, bending and compressive strength, and elastic modulus were measured. The bending strength (135–356 MPa), compression strength (178–1226 MPa), and elastic modulus (24–54 GPa) increased with sintering time; the shrinkage also increased, whereas the porosity (from 37.1 to 29.7%) and absorption ratio decreased. The high formability of the binder/metal powder mixture presents a clear advantage for fabricating tailor‐made bone and hard tissue substitution units. Moreover, the sintered compacts showed high strength and an elastic modulus comparable to that of cortical bone. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2013.
doi_str_mv 10.1002/jbm.b.32919
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677925068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1664197962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5689-1ef112d54d4034ecd991622904d7e46ad8406430df199d5a234c70887d99c15a3</originalsourceid><addsrcrecordid>eNqNkc1v1DAQxS0EoqVw4o5yQUKqsnj8mTnCihbQAqoE6tFybEe4JJutnYjuf4-X3S434DSjmd-bZ-sR8hzoAihlr2_aYdEuOEPAB-QUpGS1wAYeHnvNT8iTnG8KrKjkj8kJ41KiaMQpub4Y02Db2MdpW9m1r4bgvtt1dLavNmnchDTFkKuxqzZjGudcTXEq63nYbf3sgq_aIqyGsfd9yHk3dqU-JY862-fw7FDPyLeLd1-X7-vVl8sPyzer2knVYA2hA2BeCi8oF8F5RFCMIRVeB6GsbwRVglPfAaKXlnHhNG0aXUAH0vIz8mp_t_jeziFPZojZhb6361Cea0BpjUxS1fwHqgSgRsX-jXJE5KyRUNDzPerSmHMKndmkONi0NUDNLh9T8jGt-Z1PoV8cDs_tEPyRvQ-kAC8PgM0lgy7ZtYv5D6cVIMDuM7DnfsY-bP_maT6-_XRvXu81MU_h7qix6YdRmmtprj9fmisUuJJXS6P4L4vYtaI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1399932851</pqid></control><display><type>article</type><title>Formability and mechanical properties of porous titanium produced by a moldless process</title><source>Wiley</source><creator>Naito, Yoshihito ; Bae, Jiyoung ; Tomotake, Yoritoki ; Hamada, Kenichi ; Asaoka, Kenzo ; Ichikawa, Tetsuo</creator><creatorcontrib>Naito, Yoshihito ; Bae, Jiyoung ; Tomotake, Yoritoki ; Hamada, Kenichi ; Asaoka, Kenzo ; Ichikawa, Tetsuo</creatorcontrib><description>Tailor‐made porous titanium implants show great promise in both orthopedic and dental applications. However, traditional powder metallurgical processes require a high‐cost mold, making them economically unviable for producing unique devices. In this study, a mixture of titanium powder and an inlay wax binder was developed for moldless forming and sintering. The formability of the mixture, the dimensional changes after sintering, and the physical and mechanical properties of the sintered porous titanium were evaluated. A 90:10 wt % mixture of Ti powder and wax binder was created manually at 70°C. After debindering, the specimen was sintered in Ar at 1100°C without any mold for 1, 5, and 10 h. The shrinkage, porosity, absorption ratio, bending and compressive strength, and elastic modulus were measured. The bending strength (135–356 MPa), compression strength (178–1226 MPa), and elastic modulus (24–54 GPa) increased with sintering time; the shrinkage also increased, whereas the porosity (from 37.1 to 29.7%) and absorption ratio decreased. The high formability of the binder/metal powder mixture presents a clear advantage for fabricating tailor‐made bone and hard tissue substitution units. Moreover, the sintered compacts showed high strength and an elastic modulus comparable to that of cortical bone. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2013.</description><identifier>ISSN: 1552-4973</identifier><identifier>EISSN: 1552-4981</identifier><identifier>DOI: 10.1002/jbm.b.32919</identifier><identifier>PMID: 23559484</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Binders ; Biocompatibility ; Biocompatible Materials - chemistry ; Biological and medical sciences ; Compressive Strength ; Dental Implants ; Elastic Modulus ; Formability ; Humans ; Materials Testing ; Medical sciences ; Metallurgy - methods ; Modulus of elasticity ; moldless process ; Porosity ; Prostheses and Implants ; shrinkage ; Sintering (powder metallurgy) ; strength ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Surgical implants ; Technology. Biomaterials. Equipments ; Titanium - chemistry ; Titanium base alloys</subject><ispartof>Journal of biomedical materials research. Part B, Applied biomaterials, 2013-08, Vol.101B (6), p.1090-1094</ispartof><rights>Copyright © 2013 Wiley Periodicals, Inc.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5689-1ef112d54d4034ecd991622904d7e46ad8406430df199d5a234c70887d99c15a3</citedby><cites>FETCH-LOGICAL-c5689-1ef112d54d4034ecd991622904d7e46ad8406430df199d5a234c70887d99c15a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27619118$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23559484$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Naito, Yoshihito</creatorcontrib><creatorcontrib>Bae, Jiyoung</creatorcontrib><creatorcontrib>Tomotake, Yoritoki</creatorcontrib><creatorcontrib>Hamada, Kenichi</creatorcontrib><creatorcontrib>Asaoka, Kenzo</creatorcontrib><creatorcontrib>Ichikawa, Tetsuo</creatorcontrib><title>Formability and mechanical properties of porous titanium produced by a moldless process</title><title>Journal of biomedical materials research. Part B, Applied biomaterials</title><addtitle>J. Biomed. Mater. Res</addtitle><description>Tailor‐made porous titanium implants show great promise in both orthopedic and dental applications. However, traditional powder metallurgical processes require a high‐cost mold, making them economically unviable for producing unique devices. In this study, a mixture of titanium powder and an inlay wax binder was developed for moldless forming and sintering. The formability of the mixture, the dimensional changes after sintering, and the physical and mechanical properties of the sintered porous titanium were evaluated. A 90:10 wt % mixture of Ti powder and wax binder was created manually at 70°C. After debindering, the specimen was sintered in Ar at 1100°C without any mold for 1, 5, and 10 h. The shrinkage, porosity, absorption ratio, bending and compressive strength, and elastic modulus were measured. The bending strength (135–356 MPa), compression strength (178–1226 MPa), and elastic modulus (24–54 GPa) increased with sintering time; the shrinkage also increased, whereas the porosity (from 37.1 to 29.7%) and absorption ratio decreased. The high formability of the binder/metal powder mixture presents a clear advantage for fabricating tailor‐made bone and hard tissue substitution units. Moreover, the sintered compacts showed high strength and an elastic modulus comparable to that of cortical bone. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2013.</description><subject>Binders</subject><subject>Biocompatibility</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biological and medical sciences</subject><subject>Compressive Strength</subject><subject>Dental Implants</subject><subject>Elastic Modulus</subject><subject>Formability</subject><subject>Humans</subject><subject>Materials Testing</subject><subject>Medical sciences</subject><subject>Metallurgy - methods</subject><subject>Modulus of elasticity</subject><subject>moldless process</subject><subject>Porosity</subject><subject>Prostheses and Implants</subject><subject>shrinkage</subject><subject>Sintering (powder metallurgy)</subject><subject>strength</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Surgical implants</subject><subject>Technology. Biomaterials. Equipments</subject><subject>Titanium - chemistry</subject><subject>Titanium base alloys</subject><issn>1552-4973</issn><issn>1552-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkc1v1DAQxS0EoqVw4o5yQUKqsnj8mTnCihbQAqoE6tFybEe4JJutnYjuf4-X3S434DSjmd-bZ-sR8hzoAihlr2_aYdEuOEPAB-QUpGS1wAYeHnvNT8iTnG8KrKjkj8kJ41KiaMQpub4Y02Db2MdpW9m1r4bgvtt1dLavNmnchDTFkKuxqzZjGudcTXEq63nYbf3sgq_aIqyGsfd9yHk3dqU-JY862-fw7FDPyLeLd1-X7-vVl8sPyzer2knVYA2hA2BeCi8oF8F5RFCMIRVeB6GsbwRVglPfAaKXlnHhNG0aXUAH0vIz8mp_t_jeziFPZojZhb6361Cea0BpjUxS1fwHqgSgRsX-jXJE5KyRUNDzPerSmHMKndmkONi0NUDNLh9T8jGt-Z1PoV8cDs_tEPyRvQ-kAC8PgM0lgy7ZtYv5D6cVIMDuM7DnfsY-bP_maT6-_XRvXu81MU_h7qix6YdRmmtprj9fmisUuJJXS6P4L4vYtaI</recordid><startdate>201308</startdate><enddate>201308</enddate><creator>Naito, Yoshihito</creator><creator>Bae, Jiyoung</creator><creator>Tomotake, Yoritoki</creator><creator>Hamada, Kenichi</creator><creator>Asaoka, Kenzo</creator><creator>Ichikawa, Tetsuo</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley-Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201308</creationdate><title>Formability and mechanical properties of porous titanium produced by a moldless process</title><author>Naito, Yoshihito ; Bae, Jiyoung ; Tomotake, Yoritoki ; Hamada, Kenichi ; Asaoka, Kenzo ; Ichikawa, Tetsuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5689-1ef112d54d4034ecd991622904d7e46ad8406430df199d5a234c70887d99c15a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Binders</topic><topic>Biocompatibility</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biological and medical sciences</topic><topic>Compressive Strength</topic><topic>Dental Implants</topic><topic>Elastic Modulus</topic><topic>Formability</topic><topic>Humans</topic><topic>Materials Testing</topic><topic>Medical sciences</topic><topic>Metallurgy - methods</topic><topic>Modulus of elasticity</topic><topic>moldless process</topic><topic>Porosity</topic><topic>Prostheses and Implants</topic><topic>shrinkage</topic><topic>Sintering (powder metallurgy)</topic><topic>strength</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Surgical implants</topic><topic>Technology. Biomaterials. Equipments</topic><topic>Titanium - chemistry</topic><topic>Titanium base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naito, Yoshihito</creatorcontrib><creatorcontrib>Bae, Jiyoung</creatorcontrib><creatorcontrib>Tomotake, Yoritoki</creatorcontrib><creatorcontrib>Hamada, Kenichi</creatorcontrib><creatorcontrib>Asaoka, Kenzo</creatorcontrib><creatorcontrib>Ichikawa, Tetsuo</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naito, Yoshihito</au><au>Bae, Jiyoung</au><au>Tomotake, Yoritoki</au><au>Hamada, Kenichi</au><au>Asaoka, Kenzo</au><au>Ichikawa, Tetsuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formability and mechanical properties of porous titanium produced by a moldless process</atitle><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle><addtitle>J. Biomed. Mater. Res</addtitle><date>2013-08</date><risdate>2013</risdate><volume>101B</volume><issue>6</issue><spage>1090</spage><epage>1094</epage><pages>1090-1094</pages><issn>1552-4973</issn><eissn>1552-4981</eissn><abstract>Tailor‐made porous titanium implants show great promise in both orthopedic and dental applications. However, traditional powder metallurgical processes require a high‐cost mold, making them economically unviable for producing unique devices. In this study, a mixture of titanium powder and an inlay wax binder was developed for moldless forming and sintering. The formability of the mixture, the dimensional changes after sintering, and the physical and mechanical properties of the sintered porous titanium were evaluated. A 90:10 wt % mixture of Ti powder and wax binder was created manually at 70°C. After debindering, the specimen was sintered in Ar at 1100°C without any mold for 1, 5, and 10 h. The shrinkage, porosity, absorption ratio, bending and compressive strength, and elastic modulus were measured. The bending strength (135–356 MPa), compression strength (178–1226 MPa), and elastic modulus (24–54 GPa) increased with sintering time; the shrinkage also increased, whereas the porosity (from 37.1 to 29.7%) and absorption ratio decreased. The high formability of the binder/metal powder mixture presents a clear advantage for fabricating tailor‐made bone and hard tissue substitution units. Moreover, the sintered compacts showed high strength and an elastic modulus comparable to that of cortical bone. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2013.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>23559484</pmid><doi>10.1002/jbm.b.32919</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1552-4973
ispartof Journal of biomedical materials research. Part B, Applied biomaterials, 2013-08, Vol.101B (6), p.1090-1094
issn 1552-4973
1552-4981
language eng
recordid cdi_proquest_miscellaneous_1677925068
source Wiley
subjects Binders
Biocompatibility
Biocompatible Materials - chemistry
Biological and medical sciences
Compressive Strength
Dental Implants
Elastic Modulus
Formability
Humans
Materials Testing
Medical sciences
Metallurgy - methods
Modulus of elasticity
moldless process
Porosity
Prostheses and Implants
shrinkage
Sintering (powder metallurgy)
strength
Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases
Surgical implants
Technology. Biomaterials. Equipments
Titanium - chemistry
Titanium base alloys
title Formability and mechanical properties of porous titanium produced by a moldless process
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T06%3A43%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formability%20and%20mechanical%20properties%20of%20porous%20titanium%20produced%20by%20a%20moldless%20process&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20B,%20Applied%20biomaterials&rft.au=Naito,%20Yoshihito&rft.date=2013-08&rft.volume=101B&rft.issue=6&rft.spage=1090&rft.epage=1094&rft.pages=1090-1094&rft.issn=1552-4973&rft.eissn=1552-4981&rft_id=info:doi/10.1002/jbm.b.32919&rft_dat=%3Cproquest_cross%3E1664197962%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5689-1ef112d54d4034ecd991622904d7e46ad8406430df199d5a234c70887d99c15a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1399932851&rft_id=info:pmid/23559484&rfr_iscdi=true