Loading…

Use of carbon dioxide as feedstock for chemicals and fuels: homogeneous and heterogeneous catalysis

CO2 is considered to play a key role in an eventual climate change, due to its accumulation in the atmosphere. The control of its emission represents a challenging task that requires new ideas and new technologies. The use of perennial energy sources and renewable fuels instead of fossil fuels and t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemical technology and biotechnology (1986) 2014-03, Vol.89 (3), p.334-353
Main Authors: Dibenedetto, Angela, Angelini, Antonella, Stufano, Paolo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:CO2 is considered to play a key role in an eventual climate change, due to its accumulation in the atmosphere. The control of its emission represents a challenging task that requires new ideas and new technologies. The use of perennial energy sources and renewable fuels instead of fossil fuels and the conversion of CO2 into useful products are receiving increased attention. The utilization of CO2 as a raw material for the synthesis of chemicals and fuels is an area in which scientists and industrialists are much involved: the implementation of such technology on a large scale would allow a change from a linear use of fossil carbon to its cyclic use, mimicking Nature. In this paper the use of CO2 as building block is discussed. CO2 can replace toxic species such as phosgene in low energy processes, or can be used as source of carbon for the synthesis of energy products. The reactions with dihydrogen, alcohols, epoxides, amines, olefins, dienes, and other unsaturated hydrocarbons are discussed, under various reaction conditions, using metal systems or enzymes as catalysts. The formation of products such as formic acid and its esters, formamides, methanol, dimethyl carbonate, alkylene carbonates, carbamic acid esters, lactones, carboxylic acids, and polycarbonates, is described. The factors that have limited so far the conversion of large volumes of CO2 are analyzed and options for large‐scale CO2 catalytic conversion into chemicals and fuels are discussed. Both homogeneous and heterogeneous catalysts are considered and the pros and cons of their use highlighted. © 2013 Society of Chemical Industry
ISSN:0268-2575
1097-4660
DOI:10.1002/jctb.4229