Loading…

Detection and Classification of Brain Tumors

The incidence of brain tumors is increasing rapidly particularly in the young generation. Tumors can directly destroy all healthy brain cells. Manual (Physical) classification can cause human error. Automatic classification method is required because it reduces the load on the human observer, accura...

Full description

Saved in:
Bibliographic Details
Published in:International journal of computer applications 2015-01, Vol.112 (8)
Main Authors: Chavan, Nikita V, Jadhav, B D, Patil, P M
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 8
container_start_page
container_title International journal of computer applications
container_volume 112
creator Chavan, Nikita V
Jadhav, B D
Patil, P M
description The incidence of brain tumors is increasing rapidly particularly in the young generation. Tumors can directly destroy all healthy brain cells. Manual (Physical) classification can cause human error. Automatic classification method is required because it reduces the load on the human observer, accuracy is not affected due to large number of images. This paper elaborates attempt to detection & classification of tumor in benign stage. The proposed method consists of two stages namely feature extraction and classification. In the first stage, obtained the features related to MRI images using Gray Level Co-occurrence Matrix (GLCM) based methods, this is one of the tools for extracting texture features and second stage, the classifier is classified images using K-nearest neighbour (K -NN) classifier.
doi_str_mv 10.5120/19690-1439
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677936631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3622998701</sourcerecordid><originalsourceid>FETCH-LOGICAL-p611-68476afa95fb2d78a62b1892e7a22fc7a7e5860a7896fd833e7f2b5fcb4deacc3</originalsourceid><addsrcrecordid>eNpdjktLxEAQhAdRcFn34i8IePFgdB5J9_RR4_qABS-5L53JDGTJZtZM8v8N6kGsSxXFR1FCXCt5XyotHxQByVwVhs7EShKWubUWz__kS7FJ6SAXGdJAxUrcPfvJu6mLQ8ZDm1U9p9SFzvF3FUP2NHI3ZPV8jGO6EheB--Q3v74W9cu2rt7y3cfre_W4y0-gVA62QODAVIZGt2gZdKMsaY-sdXDI6EsLktEShNYa4zHopgyuKVrPzpm1uP2ZPY3xc_Zp2h-75Hzf8-DjnPYKEMkAGLWgN__QQ5zHYTm3UKBxQRSZL_KIURE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1662731319</pqid></control><display><type>article</type><title>Detection and Classification of Brain Tumors</title><source>Freely Accessible Science Journals</source><creator>Chavan, Nikita V ; Jadhav, B D ; Patil, P M</creator><creatorcontrib>Chavan, Nikita V ; Jadhav, B D ; Patil, P M</creatorcontrib><description>The incidence of brain tumors is increasing rapidly particularly in the young generation. Tumors can directly destroy all healthy brain cells. Manual (Physical) classification can cause human error. Automatic classification method is required because it reduces the load on the human observer, accuracy is not affected due to large number of images. This paper elaborates attempt to detection &amp; classification of tumor in benign stage. The proposed method consists of two stages namely feature extraction and classification. In the first stage, obtained the features related to MRI images using Gray Level Co-occurrence Matrix (GLCM) based methods, this is one of the tools for extracting texture features and second stage, the classifier is classified images using K-nearest neighbour (K -NN) classifier.</description><identifier>ISSN: 0975-8887</identifier><identifier>EISSN: 0975-8887</identifier><identifier>DOI: 10.5120/19690-1439</identifier><language>eng</language><publisher>New York: Foundation of Computer Science</publisher><subject>Brain ; Classification ; Classifiers ; Feature extraction ; Manuals ; Surface layer ; Texture ; Tumors</subject><ispartof>International journal of computer applications, 2015-01, Vol.112 (8)</ispartof><rights>Copyright Foundation of Computer Science 2015</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Chavan, Nikita V</creatorcontrib><creatorcontrib>Jadhav, B D</creatorcontrib><creatorcontrib>Patil, P M</creatorcontrib><title>Detection and Classification of Brain Tumors</title><title>International journal of computer applications</title><description>The incidence of brain tumors is increasing rapidly particularly in the young generation. Tumors can directly destroy all healthy brain cells. Manual (Physical) classification can cause human error. Automatic classification method is required because it reduces the load on the human observer, accuracy is not affected due to large number of images. This paper elaborates attempt to detection &amp; classification of tumor in benign stage. The proposed method consists of two stages namely feature extraction and classification. In the first stage, obtained the features related to MRI images using Gray Level Co-occurrence Matrix (GLCM) based methods, this is one of the tools for extracting texture features and second stage, the classifier is classified images using K-nearest neighbour (K -NN) classifier.</description><subject>Brain</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Feature extraction</subject><subject>Manuals</subject><subject>Surface layer</subject><subject>Texture</subject><subject>Tumors</subject><issn>0975-8887</issn><issn>0975-8887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdjktLxEAQhAdRcFn34i8IePFgdB5J9_RR4_qABS-5L53JDGTJZtZM8v8N6kGsSxXFR1FCXCt5XyotHxQByVwVhs7EShKWubUWz__kS7FJ6SAXGdJAxUrcPfvJu6mLQ8ZDm1U9p9SFzvF3FUP2NHI3ZPV8jGO6EheB--Q3v74W9cu2rt7y3cfre_W4y0-gVA62QODAVIZGt2gZdKMsaY-sdXDI6EsLktEShNYa4zHopgyuKVrPzpm1uP2ZPY3xc_Zp2h-75Hzf8-DjnPYKEMkAGLWgN__QQ5zHYTm3UKBxQRSZL_KIURE</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Chavan, Nikita V</creator><creator>Jadhav, B D</creator><creator>Patil, P M</creator><general>Foundation of Computer Science</general><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150101</creationdate><title>Detection and Classification of Brain Tumors</title><author>Chavan, Nikita V ; Jadhav, B D ; Patil, P M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p611-68476afa95fb2d78a62b1892e7a22fc7a7e5860a7896fd833e7f2b5fcb4deacc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Brain</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Feature extraction</topic><topic>Manuals</topic><topic>Surface layer</topic><topic>Texture</topic><topic>Tumors</topic><toplevel>online_resources</toplevel><creatorcontrib>Chavan, Nikita V</creatorcontrib><creatorcontrib>Jadhav, B D</creatorcontrib><creatorcontrib>Patil, P M</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of computer applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chavan, Nikita V</au><au>Jadhav, B D</au><au>Patil, P M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection and Classification of Brain Tumors</atitle><jtitle>International journal of computer applications</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>112</volume><issue>8</issue><issn>0975-8887</issn><eissn>0975-8887</eissn><abstract>The incidence of brain tumors is increasing rapidly particularly in the young generation. Tumors can directly destroy all healthy brain cells. Manual (Physical) classification can cause human error. Automatic classification method is required because it reduces the load on the human observer, accuracy is not affected due to large number of images. This paper elaborates attempt to detection &amp; classification of tumor in benign stage. The proposed method consists of two stages namely feature extraction and classification. In the first stage, obtained the features related to MRI images using Gray Level Co-occurrence Matrix (GLCM) based methods, this is one of the tools for extracting texture features and second stage, the classifier is classified images using K-nearest neighbour (K -NN) classifier.</abstract><cop>New York</cop><pub>Foundation of Computer Science</pub><doi>10.5120/19690-1439</doi></addata></record>
fulltext fulltext
identifier ISSN: 0975-8887
ispartof International journal of computer applications, 2015-01, Vol.112 (8)
issn 0975-8887
0975-8887
language eng
recordid cdi_proquest_miscellaneous_1677936631
source Freely Accessible Science Journals
subjects Brain
Classification
Classifiers
Feature extraction
Manuals
Surface layer
Texture
Tumors
title Detection and Classification of Brain Tumors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T15%3A13%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20and%20Classification%20of%20Brain%20Tumors&rft.jtitle=International%20journal%20of%20computer%20applications&rft.au=Chavan,%20Nikita%20V&rft.date=2015-01-01&rft.volume=112&rft.issue=8&rft.issn=0975-8887&rft.eissn=0975-8887&rft_id=info:doi/10.5120/19690-1439&rft_dat=%3Cproquest%3E3622998701%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p611-68476afa95fb2d78a62b1892e7a22fc7a7e5860a7896fd833e7f2b5fcb4deacc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1662731319&rft_id=info:pmid/&rfr_iscdi=true