Loading…

A New Nonsmooth Trust Region Algorithm for Locally Lipschitz Unconstrained Optimization Problems

In this paper, a new nonsmooth trust region algorithm is proposed for solving unconstrained minimization problems with locally Lipschitz objective functions. At first, by using an approximation of the steepest descent direction, a local model is presented for locally Lipschitz functions. More precis...

Full description

Saved in:
Bibliographic Details
Published in:Journal of optimization theory and applications 2015-03, Vol.164 (3), p.733-754
Main Authors: Akbari, Z., Yousefpour, R., Reza Peyghami, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-70cc8e77b3c1af77cde5a0843f5fdc73e1ad010728dd77478030b3cec9cb337e3
cites cdi_FETCH-LOGICAL-c349t-70cc8e77b3c1af77cde5a0843f5fdc73e1ad010728dd77478030b3cec9cb337e3
container_end_page 754
container_issue 3
container_start_page 733
container_title Journal of optimization theory and applications
container_volume 164
creator Akbari, Z.
Yousefpour, R.
Reza Peyghami, M.
description In this paper, a new nonsmooth trust region algorithm is proposed for solving unconstrained minimization problems with locally Lipschitz objective functions. At first, by using an approximation of the steepest descent direction, a local model is presented for locally Lipschitz functions. More precisely, in the quadratic model of classical trust region methods, the gradient vector is replaced by an approximation of the steepest descent direction. We then apply one of the efficient approaches of classical trust region methods in order to solve the obtained model. Using the BFGS updating formula for the Hessian approximation of the model, we show that the proposed algorithm is convergent under some mild and standard conditions on the objective function. Finally, the presented algorithm is implemented in the MATLAB environment and applied on some nonsmooth test problems.
doi_str_mv 10.1007/s10957-014-0534-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677937250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1677937250</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-70cc8e77b3c1af77cde5a0843f5fdc73e1ad010728dd77478030b3cec9cb337e3</originalsourceid><addsrcrecordid>eNp1kM1KAzEURoMoWKsP4C7gxs3ozWSmd7Is4h8UFWnXMc1k2sjMZExSpD69KXUhgqu7Oefjcgg5Z3DFAPA6MBAlZsCKDEpeZJMDMmIl8iyvsDokI4A8z3jOxTE5CeEdAESFxYi8TemT-aRPrg-dc3FN534TIn01K-t6Om1Xztu47mjjPJ05rdp2S2d2CHpt4xdd9DqJ0Svbm5o-D9F29kvFnfri3bI1XTglR41qgzn7uWOyuLud3zxks-f7x5vpLNO8EDFD0LoyiEuumWoQdW1KBVXBm7KpNXLDVA0MMK_qGrHACjgk1mihl5yj4WNyud8dvPvYmBBlZ4M2bat64zZBsgmi4JiXkNCLP-i72_g-fZeoUlSiQC4SxfaU9i4Ebxo5eNspv5UM5K653DeXqbncNZeT5OR7JyS2Xxn_a_lf6Rvw3YUO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1659894739</pqid></control><display><type>article</type><title>A New Nonsmooth Trust Region Algorithm for Locally Lipschitz Unconstrained Optimization Problems</title><source>ABI/INFORM global</source><source>Springer Nature</source><creator>Akbari, Z. ; Yousefpour, R. ; Reza Peyghami, M.</creator><creatorcontrib>Akbari, Z. ; Yousefpour, R. ; Reza Peyghami, M.</creatorcontrib><description>In this paper, a new nonsmooth trust region algorithm is proposed for solving unconstrained minimization problems with locally Lipschitz objective functions. At first, by using an approximation of the steepest descent direction, a local model is presented for locally Lipschitz functions. More precisely, in the quadratic model of classical trust region methods, the gradient vector is replaced by an approximation of the steepest descent direction. We then apply one of the efficient approaches of classical trust region methods in order to solve the obtained model. Using the BFGS updating formula for the Hessian approximation of the model, we show that the proposed algorithm is convergent under some mild and standard conditions on the objective function. Finally, the presented algorithm is implemented in the MATLAB environment and applied on some nonsmooth test problems.</description><identifier>ISSN: 0022-3239</identifier><identifier>EISSN: 1573-2878</identifier><identifier>DOI: 10.1007/s10957-014-0534-6</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithms ; Applications of Mathematics ; Approximation ; Calculus of Variations and Optimal Control; Optimization ; Descent ; Engineering ; Linear programming ; Mathematical analysis ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Matlab ; Methods ; Operations research ; Operations Research/Decision Theory ; Optimization ; Studies ; Theory of Computation ; Vectors (mathematics)</subject><ispartof>Journal of optimization theory and applications, 2015-03, Vol.164 (3), p.733-754</ispartof><rights>Springer Science+Business Media New York 2014</rights><rights>Springer Science+Business Media New York 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-70cc8e77b3c1af77cde5a0843f5fdc73e1ad010728dd77478030b3cec9cb337e3</citedby><cites>FETCH-LOGICAL-c349t-70cc8e77b3c1af77cde5a0843f5fdc73e1ad010728dd77478030b3cec9cb337e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1659894739/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1659894739?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74895</link.rule.ids></links><search><creatorcontrib>Akbari, Z.</creatorcontrib><creatorcontrib>Yousefpour, R.</creatorcontrib><creatorcontrib>Reza Peyghami, M.</creatorcontrib><title>A New Nonsmooth Trust Region Algorithm for Locally Lipschitz Unconstrained Optimization Problems</title><title>Journal of optimization theory and applications</title><addtitle>J Optim Theory Appl</addtitle><description>In this paper, a new nonsmooth trust region algorithm is proposed for solving unconstrained minimization problems with locally Lipschitz objective functions. At first, by using an approximation of the steepest descent direction, a local model is presented for locally Lipschitz functions. More precisely, in the quadratic model of classical trust region methods, the gradient vector is replaced by an approximation of the steepest descent direction. We then apply one of the efficient approaches of classical trust region methods in order to solve the obtained model. Using the BFGS updating formula for the Hessian approximation of the model, we show that the proposed algorithm is convergent under some mild and standard conditions on the objective function. Finally, the presented algorithm is implemented in the MATLAB environment and applied on some nonsmooth test problems.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Approximation</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Descent</subject><subject>Engineering</subject><subject>Linear programming</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matlab</subject><subject>Methods</subject><subject>Operations research</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Studies</subject><subject>Theory of Computation</subject><subject>Vectors (mathematics)</subject><issn>0022-3239</issn><issn>1573-2878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kM1KAzEURoMoWKsP4C7gxs3ozWSmd7Is4h8UFWnXMc1k2sjMZExSpD69KXUhgqu7Oefjcgg5Z3DFAPA6MBAlZsCKDEpeZJMDMmIl8iyvsDokI4A8z3jOxTE5CeEdAESFxYi8TemT-aRPrg-dc3FN534TIn01K-t6Om1Xztu47mjjPJ05rdp2S2d2CHpt4xdd9DqJ0Svbm5o-D9F29kvFnfri3bI1XTglR41qgzn7uWOyuLud3zxks-f7x5vpLNO8EDFD0LoyiEuumWoQdW1KBVXBm7KpNXLDVA0MMK_qGrHACjgk1mihl5yj4WNyud8dvPvYmBBlZ4M2bat64zZBsgmi4JiXkNCLP-i72_g-fZeoUlSiQC4SxfaU9i4Ebxo5eNspv5UM5K653DeXqbncNZeT5OR7JyS2Xxn_a_lf6Rvw3YUO</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Akbari, Z.</creator><creator>Yousefpour, R.</creator><creator>Reza Peyghami, M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20150301</creationdate><title>A New Nonsmooth Trust Region Algorithm for Locally Lipschitz Unconstrained Optimization Problems</title><author>Akbari, Z. ; Yousefpour, R. ; Reza Peyghami, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-70cc8e77b3c1af77cde5a0843f5fdc73e1ad010728dd77478030b3cec9cb337e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Approximation</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Descent</topic><topic>Engineering</topic><topic>Linear programming</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matlab</topic><topic>Methods</topic><topic>Operations research</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Studies</topic><topic>Theory of Computation</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akbari, Z.</creatorcontrib><creatorcontrib>Yousefpour, R.</creatorcontrib><creatorcontrib>Reza Peyghami, M.</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of optimization theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akbari, Z.</au><au>Yousefpour, R.</au><au>Reza Peyghami, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Nonsmooth Trust Region Algorithm for Locally Lipschitz Unconstrained Optimization Problems</atitle><jtitle>Journal of optimization theory and applications</jtitle><stitle>J Optim Theory Appl</stitle><date>2015-03-01</date><risdate>2015</risdate><volume>164</volume><issue>3</issue><spage>733</spage><epage>754</epage><pages>733-754</pages><issn>0022-3239</issn><eissn>1573-2878</eissn><abstract>In this paper, a new nonsmooth trust region algorithm is proposed for solving unconstrained minimization problems with locally Lipschitz objective functions. At first, by using an approximation of the steepest descent direction, a local model is presented for locally Lipschitz functions. More precisely, in the quadratic model of classical trust region methods, the gradient vector is replaced by an approximation of the steepest descent direction. We then apply one of the efficient approaches of classical trust region methods in order to solve the obtained model. Using the BFGS updating formula for the Hessian approximation of the model, we show that the proposed algorithm is convergent under some mild and standard conditions on the objective function. Finally, the presented algorithm is implemented in the MATLAB environment and applied on some nonsmooth test problems.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10957-014-0534-6</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3239
ispartof Journal of optimization theory and applications, 2015-03, Vol.164 (3), p.733-754
issn 0022-3239
1573-2878
language eng
recordid cdi_proquest_miscellaneous_1677937250
source ABI/INFORM global; Springer Nature
subjects Algorithms
Applications of Mathematics
Approximation
Calculus of Variations and Optimal Control
Optimization
Descent
Engineering
Linear programming
Mathematical analysis
Mathematical models
Mathematics
Mathematics and Statistics
Matlab
Methods
Operations research
Operations Research/Decision Theory
Optimization
Studies
Theory of Computation
Vectors (mathematics)
title A New Nonsmooth Trust Region Algorithm for Locally Lipschitz Unconstrained Optimization Problems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A54%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Nonsmooth%20Trust%20Region%20Algorithm%20for%20Locally%20Lipschitz%20Unconstrained%20Optimization%20Problems&rft.jtitle=Journal%20of%20optimization%20theory%20and%20applications&rft.au=Akbari,%20Z.&rft.date=2015-03-01&rft.volume=164&rft.issue=3&rft.spage=733&rft.epage=754&rft.pages=733-754&rft.issn=0022-3239&rft.eissn=1573-2878&rft_id=info:doi/10.1007/s10957-014-0534-6&rft_dat=%3Cproquest_cross%3E1677937250%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-70cc8e77b3c1af77cde5a0843f5fdc73e1ad010728dd77478030b3cec9cb337e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1659894739&rft_id=info:pmid/&rfr_iscdi=true