Loading…
A New Nonsmooth Trust Region Algorithm for Locally Lipschitz Unconstrained Optimization Problems
In this paper, a new nonsmooth trust region algorithm is proposed for solving unconstrained minimization problems with locally Lipschitz objective functions. At first, by using an approximation of the steepest descent direction, a local model is presented for locally Lipschitz functions. More precis...
Saved in:
Published in: | Journal of optimization theory and applications 2015-03, Vol.164 (3), p.733-754 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c349t-70cc8e77b3c1af77cde5a0843f5fdc73e1ad010728dd77478030b3cec9cb337e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c349t-70cc8e77b3c1af77cde5a0843f5fdc73e1ad010728dd77478030b3cec9cb337e3 |
container_end_page | 754 |
container_issue | 3 |
container_start_page | 733 |
container_title | Journal of optimization theory and applications |
container_volume | 164 |
creator | Akbari, Z. Yousefpour, R. Reza Peyghami, M. |
description | In this paper, a new nonsmooth trust region algorithm is proposed for solving unconstrained minimization problems with locally Lipschitz objective functions. At first, by using an approximation of the steepest descent direction, a local model is presented for locally Lipschitz functions. More precisely, in the quadratic model of classical trust region methods, the gradient vector is replaced by an approximation of the steepest descent direction. We then apply one of the efficient approaches of classical trust region methods in order to solve the obtained model. Using the BFGS updating formula for the Hessian approximation of the model, we show that the proposed algorithm is convergent under some mild and standard conditions on the objective function. Finally, the presented algorithm is implemented in the MATLAB environment and applied on some nonsmooth test problems. |
doi_str_mv | 10.1007/s10957-014-0534-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677937250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1677937250</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-70cc8e77b3c1af77cde5a0843f5fdc73e1ad010728dd77478030b3cec9cb337e3</originalsourceid><addsrcrecordid>eNp1kM1KAzEURoMoWKsP4C7gxs3ozWSmd7Is4h8UFWnXMc1k2sjMZExSpD69KXUhgqu7Oefjcgg5Z3DFAPA6MBAlZsCKDEpeZJMDMmIl8iyvsDokI4A8z3jOxTE5CeEdAESFxYi8TemT-aRPrg-dc3FN534TIn01K-t6Om1Xztu47mjjPJ05rdp2S2d2CHpt4xdd9DqJ0Svbm5o-D9F29kvFnfri3bI1XTglR41qgzn7uWOyuLud3zxks-f7x5vpLNO8EDFD0LoyiEuumWoQdW1KBVXBm7KpNXLDVA0MMK_qGrHACjgk1mihl5yj4WNyud8dvPvYmBBlZ4M2bat64zZBsgmi4JiXkNCLP-i72_g-fZeoUlSiQC4SxfaU9i4Ebxo5eNspv5UM5K653DeXqbncNZeT5OR7JyS2Xxn_a_lf6Rvw3YUO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1659894739</pqid></control><display><type>article</type><title>A New Nonsmooth Trust Region Algorithm for Locally Lipschitz Unconstrained Optimization Problems</title><source>ABI/INFORM global</source><source>Springer Nature</source><creator>Akbari, Z. ; Yousefpour, R. ; Reza Peyghami, M.</creator><creatorcontrib>Akbari, Z. ; Yousefpour, R. ; Reza Peyghami, M.</creatorcontrib><description>In this paper, a new nonsmooth trust region algorithm is proposed for solving unconstrained minimization problems with locally Lipschitz objective functions. At first, by using an approximation of the steepest descent direction, a local model is presented for locally Lipschitz functions. More precisely, in the quadratic model of classical trust region methods, the gradient vector is replaced by an approximation of the steepest descent direction. We then apply one of the efficient approaches of classical trust region methods in order to solve the obtained model. Using the BFGS updating formula for the Hessian approximation of the model, we show that the proposed algorithm is convergent under some mild and standard conditions on the objective function. Finally, the presented algorithm is implemented in the MATLAB environment and applied on some nonsmooth test problems.</description><identifier>ISSN: 0022-3239</identifier><identifier>EISSN: 1573-2878</identifier><identifier>DOI: 10.1007/s10957-014-0534-6</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithms ; Applications of Mathematics ; Approximation ; Calculus of Variations and Optimal Control; Optimization ; Descent ; Engineering ; Linear programming ; Mathematical analysis ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Matlab ; Methods ; Operations research ; Operations Research/Decision Theory ; Optimization ; Studies ; Theory of Computation ; Vectors (mathematics)</subject><ispartof>Journal of optimization theory and applications, 2015-03, Vol.164 (3), p.733-754</ispartof><rights>Springer Science+Business Media New York 2014</rights><rights>Springer Science+Business Media New York 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-70cc8e77b3c1af77cde5a0843f5fdc73e1ad010728dd77478030b3cec9cb337e3</citedby><cites>FETCH-LOGICAL-c349t-70cc8e77b3c1af77cde5a0843f5fdc73e1ad010728dd77478030b3cec9cb337e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1659894739/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1659894739?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74895</link.rule.ids></links><search><creatorcontrib>Akbari, Z.</creatorcontrib><creatorcontrib>Yousefpour, R.</creatorcontrib><creatorcontrib>Reza Peyghami, M.</creatorcontrib><title>A New Nonsmooth Trust Region Algorithm for Locally Lipschitz Unconstrained Optimization Problems</title><title>Journal of optimization theory and applications</title><addtitle>J Optim Theory Appl</addtitle><description>In this paper, a new nonsmooth trust region algorithm is proposed for solving unconstrained minimization problems with locally Lipschitz objective functions. At first, by using an approximation of the steepest descent direction, a local model is presented for locally Lipschitz functions. More precisely, in the quadratic model of classical trust region methods, the gradient vector is replaced by an approximation of the steepest descent direction. We then apply one of the efficient approaches of classical trust region methods in order to solve the obtained model. Using the BFGS updating formula for the Hessian approximation of the model, we show that the proposed algorithm is convergent under some mild and standard conditions on the objective function. Finally, the presented algorithm is implemented in the MATLAB environment and applied on some nonsmooth test problems.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Approximation</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Descent</subject><subject>Engineering</subject><subject>Linear programming</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matlab</subject><subject>Methods</subject><subject>Operations research</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Studies</subject><subject>Theory of Computation</subject><subject>Vectors (mathematics)</subject><issn>0022-3239</issn><issn>1573-2878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kM1KAzEURoMoWKsP4C7gxs3ozWSmd7Is4h8UFWnXMc1k2sjMZExSpD69KXUhgqu7Oefjcgg5Z3DFAPA6MBAlZsCKDEpeZJMDMmIl8iyvsDokI4A8z3jOxTE5CeEdAESFxYi8TemT-aRPrg-dc3FN534TIn01K-t6Om1Xztu47mjjPJ05rdp2S2d2CHpt4xdd9DqJ0Svbm5o-D9F29kvFnfri3bI1XTglR41qgzn7uWOyuLud3zxks-f7x5vpLNO8EDFD0LoyiEuumWoQdW1KBVXBm7KpNXLDVA0MMK_qGrHACjgk1mihl5yj4WNyud8dvPvYmBBlZ4M2bat64zZBsgmi4JiXkNCLP-i72_g-fZeoUlSiQC4SxfaU9i4Ebxo5eNspv5UM5K653DeXqbncNZeT5OR7JyS2Xxn_a_lf6Rvw3YUO</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Akbari, Z.</creator><creator>Yousefpour, R.</creator><creator>Reza Peyghami, M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20150301</creationdate><title>A New Nonsmooth Trust Region Algorithm for Locally Lipschitz Unconstrained Optimization Problems</title><author>Akbari, Z. ; Yousefpour, R. ; Reza Peyghami, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-70cc8e77b3c1af77cde5a0843f5fdc73e1ad010728dd77478030b3cec9cb337e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Approximation</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Descent</topic><topic>Engineering</topic><topic>Linear programming</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matlab</topic><topic>Methods</topic><topic>Operations research</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Studies</topic><topic>Theory of Computation</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akbari, Z.</creatorcontrib><creatorcontrib>Yousefpour, R.</creatorcontrib><creatorcontrib>Reza Peyghami, M.</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of optimization theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akbari, Z.</au><au>Yousefpour, R.</au><au>Reza Peyghami, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Nonsmooth Trust Region Algorithm for Locally Lipschitz Unconstrained Optimization Problems</atitle><jtitle>Journal of optimization theory and applications</jtitle><stitle>J Optim Theory Appl</stitle><date>2015-03-01</date><risdate>2015</risdate><volume>164</volume><issue>3</issue><spage>733</spage><epage>754</epage><pages>733-754</pages><issn>0022-3239</issn><eissn>1573-2878</eissn><abstract>In this paper, a new nonsmooth trust region algorithm is proposed for solving unconstrained minimization problems with locally Lipschitz objective functions. At first, by using an approximation of the steepest descent direction, a local model is presented for locally Lipschitz functions. More precisely, in the quadratic model of classical trust region methods, the gradient vector is replaced by an approximation of the steepest descent direction. We then apply one of the efficient approaches of classical trust region methods in order to solve the obtained model. Using the BFGS updating formula for the Hessian approximation of the model, we show that the proposed algorithm is convergent under some mild and standard conditions on the objective function. Finally, the presented algorithm is implemented in the MATLAB environment and applied on some nonsmooth test problems.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10957-014-0534-6</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3239 |
ispartof | Journal of optimization theory and applications, 2015-03, Vol.164 (3), p.733-754 |
issn | 0022-3239 1573-2878 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677937250 |
source | ABI/INFORM global; Springer Nature |
subjects | Algorithms Applications of Mathematics Approximation Calculus of Variations and Optimal Control Optimization Descent Engineering Linear programming Mathematical analysis Mathematical models Mathematics Mathematics and Statistics Matlab Methods Operations research Operations Research/Decision Theory Optimization Studies Theory of Computation Vectors (mathematics) |
title | A New Nonsmooth Trust Region Algorithm for Locally Lipschitz Unconstrained Optimization Problems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A54%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Nonsmooth%20Trust%20Region%20Algorithm%20for%20Locally%20Lipschitz%20Unconstrained%20Optimization%20Problems&rft.jtitle=Journal%20of%20optimization%20theory%20and%20applications&rft.au=Akbari,%20Z.&rft.date=2015-03-01&rft.volume=164&rft.issue=3&rft.spage=733&rft.epage=754&rft.pages=733-754&rft.issn=0022-3239&rft.eissn=1573-2878&rft_id=info:doi/10.1007/s10957-014-0534-6&rft_dat=%3Cproquest_cross%3E1677937250%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-70cc8e77b3c1af77cde5a0843f5fdc73e1ad010728dd77478030b3cec9cb337e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1659894739&rft_id=info:pmid/&rfr_iscdi=true |